diff --git a/src/11_nearly_free_electron_model_solutions.md b/src/11_nearly_free_electron_model_solutions.md index 338644934381ea52474da9153db2cb5f8c6c6b75..3b9d20708fa74b7e021457affefdde261422b6d8 100644 --- a/src/11_nearly_free_electron_model_solutions.md +++ b/src/11_nearly_free_electron_model_solutions.md @@ -134,23 +134,31 @@ E_-(k) = -\frac{\lambda}{a}+\frac{\hbar^2}{4m}\left[k^2+\left(k-\frac{2\pi}{a}\r See the lecture notes! ### Subquestion 3 -We split the Hamiltonian into two parts $H=H_0+H_1$, where$H_0$ describes a particle in one delta-function potential well, and $H_1$ is the perturbation by the other delta functions: +We split the Hamiltonian into two parts $H=H_n+H_{~n}$, where $H_n$ describes a particle in a single delta-function potential well, and $H_{~n}$ is the perturbation by the other delta functions: \begin{align} -H_0 = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - \V_0\delta(x-na) \\ -H_1 = & - V_0 \sum_{m\neq n}\delta(x-ma) +H_n = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - V_0\delta(x-na) \\ +H_{~n} = & - V_0 \sum_{m\neq n}\delta(x-ma) \end{align} -such that $H_0|n\rangle = -\epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=mV_0/\hbar^2$. +such that $H_n|n\rangle = -\epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=mV_0/\hbar^2$. We can now calculate +$$ +\langle n | H |n \rangle = \epsilon_0 + \langle n |H_{~n}|n\rangle +$$ +Note that the last term represents the change in energy of the wavefunction $|n\rangle$ that is centered at the $n$-th delta function caused by the presence of the other delta functions. This term yields +$$ +\langle n |H_{~n}|n\rangle = \kappa \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = \kappa \sum_{m \neq 0 } e^{-2\kappa|ma|} = 2\kappa(\frac{1}{1-e^{-2\kappa a}}-1) +$$ +Note that the result should not depend on $n$, so we chose $n=0$ for convenience. -It follows that +Similarly, we can calculate $$ -\langle n | H |n \rangle = \epsilon_0 + \langle n |H_1|n\rangle +\langle n-1 | H |n \rangle = \epsilon_0\langle n-1 |n \rangle + \langle n-1 |H_{~n}|n\rangle $$ -where +where $\langle n-1|n\rangle$ is the overlap between two neighbouring wavefunctions, given by $$ -\langle n |H_1|n\rangle = \kappa \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = \kappa \sum_{m \neq 0 } e^{-2\kappa|ma|} +$\langle n-1|n\rangle$ = 2\kappa\int_0^\infty e^{-\kappa|x-a/2|}e^{-\kappa|x+a/2|} = e^{-\kappa a}(1+\kappa a) $$ -In progress of being updated.... +In progress of being updated...... \begin{equation} \varepsilon_0=\braket{n|\hat{H}|n}=\braket{n|\hat{K}|n}+\braket{n|\hat{V}(x)|n}