diff --git a/docs/lecture_1.md b/docs/lecture_1.md index 0d6d176702977acef6f0ba0ec432118269217db4..8a43009edcabf1b7008a62a0e870c2f6e7c5c855 100644 --- a/docs/lecture_1.md +++ b/docs/lecture_1.md @@ -5,7 +5,7 @@ _Based on chapter 2 of the book_ In this lecture we will: - discuss specific heat of a solid based on atomic vibrations (_phonons_) -- disregard periodic lattice $\rightarrow$ consider homogeneous medium +- disregard periodic lattice $\Rightarrow$ consider homogeneous medium - _(chapter 9: discuss phonons in terms of atomic masses and springs)_ - discuss the Einstein model - discuss the Debye model @@ -19,10 +19,10 @@ This can be explained by considering a _quantum_ harmonic oscillator: $$\varepsilon_n=\left(n+\frac{1}{2}\right)\hbar\omega$$ -Phonons are bosons $\rightarrow$ they follow Bose-Einstein statistics. +Phonons are bosons $\Rightarrow$ they follow Bose-Einstein statistics. $$ -n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}\rightarrow\bar{\varepsilon}=\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1} +n(\omega,T)=\frac{1}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1}\Rightarrow\bar{\varepsilon}=\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/k_{\rm B}T}-1} $$  @@ -58,8 +58,6 @@ $$E=\int\limits_0^\infty\left(\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e} $g(\omega)$ is the _density of states_: the number of normal modes found at each position along the $\omega$-axis. How do we calculate $g(\omega)$? - - #### Reciprocal space, periodic boundary conditions Each normal mode can be described by a _wave vector_ ${\bf k}$. A wave vector represents a point in _reciprocal space_ or _k-space_. We can find $g(\omega)$ by counting the number of normal modes in k-space and then converting those to $\omega$. @@ -96,7 +94,7 @@ Substitute $x\equiv\frac{\hbar\omega}{k_{\rm B}T}$: $$\Rightarrow E=E_{\rm Z}+\frac{3V}{2\pi^2 v_{\rm s}^3}\frac{\left(k_{\rm B}T\right)^4}{\hbar^3}\int\limits_0^\infty\frac{x^3}{ {\rm e}^x-1}{\rm d}x$$ -The integral on the right is a constant, $\left(\frac{\pi^4}{15}\right)$ $\rightarrow$ $C=\frac{ {\rm d}E}{ {\rm d}T}\propto T^3$. +The integral on the right is a constant, $\left(\frac{\pi^4}{15}\right)$ $\Rightarrow$ $C=\frac{ {\rm d}E}{ {\rm d}T}\propto T^3$. #### Debye's interpolation for medium T The above approximation works very well at low temperature. But at high temperature, $C$ should of course settle at $3k_{\rm B}$ (the Dulong-Petit value). The reason why the model breaks down, is that it assumes that there is an infinite number of harmonic oscillators up to infinite frequency.