diff --git a/docs/11_nearly_free_electron_model.md b/docs/11_nearly_free_electron_model.md
index 2e79af13d6476a58916f8aa7d6f0abdf5d316919..737c19c496f21133b446624906e1d59093e92aaa 100644
--- a/docs/11_nearly_free_electron_model.md
+++ b/docs/11_nearly_free_electron_model.md
@@ -80,6 +80,7 @@ ax.set_ylabel("$E$")
 ax.set_ylim(-.5, max_en + 5)
 ax.set_xticks(pi * np.arange(-3, 4))
 ax.set_xticklabels(fr"${i}\pi$".replace("1", "") if i else "$0$" for i in range(-3, 4))
+ax.set_yticks([])
 
 draw_classic_axes(ax, xlabeloffset=4)
 ```
@@ -238,6 +239,7 @@ ax.set_ylabel("$E$")
 ax.set_ylim(-.5, max_en + 5)
 ax.set_xticks(pi * np.arange(-1, 2))
 ax.set_xticklabels(r"$-\pi$ $0$ $\pi$".split())
+ax.set_yticks([])
 
 draw_classic_axes(ax, xlabeloffset=4)
 ```
@@ -267,6 +269,7 @@ ax.set_ylabel("$E$")
 ax.set_ylim(-.5, max_en + 5)
 ax.set_xticks(pi * np.arange(-3, 4))
 ax.set_xticklabels(fr"${i}\pi$".replace("1", "") if i else "$0$" for i in range(-3, 4))
+ax.set_yticks([])
 
 draw_classic_axes(ax, xlabeloffset=4)
 ```
diff --git a/docs/13_semiconductors.md b/docs/13_semiconductors.md
index 64c6f3c0edabcd584e4684759b9b25e8384bb0bf..23d9f05d687d3ca7babba9bd558bb9943edfeebc 100644
--- a/docs/13_semiconductors.md
+++ b/docs/13_semiconductors.md
@@ -181,6 +181,7 @@ pyplot.xlabel('$k$')
 pyplot.ylabel('$E$')
 pyplot.ylim(-1.5, 3)
 pyplot.yticks([E_C_1 - .15, E_V_1 +.15], "$E_C$ $E_V$".split())
+pyplot.xticks([])
 pyplot.legend(lines, ['Conduction band', 'Valence band'])
 draw_classic_axes(ax)
 ```
@@ -230,6 +231,7 @@ ax.set_xlabel('$E$')
 ax.set_ylabel('$g$')
 ax.set_xticks([E_V, E_C, E_F])
 ax.set_xticklabels(['$E_V$', '$E_C$', '$E_F$'])
+ax.set_yticks([])
 ax.legend()
 draw_classic_axes(ax, xlabeloffset=.2)
 ```
diff --git a/docs/13_semiconductors_solutions.md b/docs/13_semiconductors_solutions.md
index 53d891c456460abc6d9e453f2990eec1adf9b571..122dde1fc63c30e6d6c7e45987314bfc4ece8ddc 100644
--- a/docs/13_semiconductors_solutions.md
+++ b/docs/13_semiconductors_solutions.md
@@ -41,7 +41,8 @@ Following the derivation in the lecture notes, whenever calculating the hole-dep
     
     remembering that $E_{F,h} = - E_F$.
 
-#### Question 3. 
+#### Question 3.
+
 The sketch of the density of states (=band structure) for a 2D semiconductor: 
 
 ```python
@@ -81,12 +82,13 @@ ax.set_xlabel('$E$')
 ax.set_ylabel('$g$')
 ax.set_xticks([E_V, E_C, E_F])
 ax.set_xticklabels(['$E_V$', '$E_C$', '$E_F$'])
+ax.set_yticks([])
 ax.legend()
 draw_classic_axes(ax, xlabeloffset=.1)
-
 ```
 
-#### Question 4. 
+#### Question 4.
+
 Assuming that the Fermi energy is in the gap $(E_v < E_F < E_c)$ and far away from the band edges compared to $k_BT$;
 
 $$
diff --git a/docs/14_doping_and_devices.md b/docs/14_doping_and_devices.md
index b246bb9b26d98bc7af0476076f6a797c2060383b..00c2d99f79fa8ea3a0d40ea6daa80d5aca1e2e0d 100644
--- a/docs/14_doping_and_devices.md
+++ b/docs/14_doping_and_devices.md
@@ -106,6 +106,7 @@ ax.plot(E, g_A, label='$g_A$')
 ax.legend()
 ax.set_xticks([E_V, E_C, E_A, E_D])
 ax.set_xticklabels(['$E_V$', '$E_C$', '$E_A$', '$E_D$'])
+ax.set_yticks([])
 ax.set_ylabel('$g$')
 ax.set_xlabel('$E$')
 draw_classic_axes(ax, xlabeloffset=.2)
@@ -241,6 +242,7 @@ ax1.set_ylabel("$E_F$")
 ax1.set_xlabel("$T$")
 ax1.set_yticks([E_C, (E_C + E_V) / 2, E_D])
 ax1.set_yticklabels(["$E_C$", "$(E_C + E_V) / 2$", "$E_D$"])
+ax1.set_xticks([])
 ax1.legend()
 draw_classic_axes(ax1, y=-.05, ylabeloffset=0.01)
 
@@ -253,6 +255,7 @@ ax2.set_ylabel("$n$")
 ax2.set_xlabel("$T$")
 ax2.set_yticks([(N_D - N_A)])
 ax2.set_yticklabels(["$N_D - N_A$"])
+ax2.set_xticks([])
 draw_classic_axes(ax2, ylabeloffset=0.01)
 ```
 
@@ -690,11 +693,7 @@ Conductance combines the contributions of electrons and holes, and allows to det
 
 A $pn$-junction has a **depletion layer** in its middle with the potential in a $pn$-junction having the following shape (where the transition region is made out of two parabolas):
 
-
-<figure markdown>
 ![](figures/band_diagram_solution.svg)
-    <figcaption> </figcaption>  
-</figure>
 
 ## Exercises
 
diff --git a/docs/4_sommerfeld_model.md b/docs/4_sommerfeld_model.md
index ff9fc016ff425955c830b24a56427d86017eebe6..469e2b19414b7fcd5685286bbc32fa87ad669401 100644
--- a/docs/4_sommerfeld_model.md
+++ b/docs/4_sommerfeld_model.md
@@ -284,6 +284,8 @@ ax.plot(E, 15*np.sqrt(E), label = '3D')
 ax.set_ylabel(r"$g(\varepsilon)$")
 ax.set_xlabel(r"$\varepsilon$")
 ax.legend()
+ax.set_xticks([])
+ax.set_yticks([])
 draw_classic_axes(ax, xlabeloffset=.2)
 ```
 
@@ -368,6 +370,7 @@ ax.annotate('', xy=(1, 0), xytext=(1, 1),
 ax.text(1.2, .7, r'$g(ε_F)$', ha='center')
 ax.set_xticks([1])
 ax.set_xticklabels([r'$ε_F$'])
+ax.set_yticks([])
 
 ax.set_ylabel(r"$g(ε)$")
 ax.set_xlabel(r"$ε$")
diff --git a/docs/5_atoms_and_lcao.md b/docs/5_atoms_and_lcao.md
index 233c7795cfcfbdf043e59253f5362425fd8ffc1d..3e4cc99d911df0263f16020181226126885e7f2e 100644
--- a/docs/5_atoms_and_lcao.md
+++ b/docs/5_atoms_and_lcao.md
@@ -239,17 +239,20 @@ r_1, r_2 = 0.5, 2.51
 U = -1/np.abs(x - r_1) - 1/np.abs(x - r_2)
 psi_1 = 0.3 * np.exp(-2*(x - r_1)**2)
 psi_2 = 0.3 * np.exp(-2*(x - r_2)**2)
-pyplot.fill_between(x, psi_1 + psi_2 - .5, -.5, alpha=.5, label="$\psi_+$")
-pyplot.fill_between(x, psi_1 - psi_2 + .5, .5, alpha=.5, label="$\psi_-$")
+pyplot.fill_between(x, psi_1 + psi_2 - .5, -.5, alpha=.5, label=r"$\psi_+$")
+pyplot.fill_between(x, psi_1 - psi_2 + .5, .5, alpha=.5, label=r"$\psi_-$")
 pyplot.plot(x, U, label="$U(x)$", c='k', linestyle=':')
 pyplot.xlabel("$x$")
-pyplot.ylabel("$\psi$")
+pyplot.ylabel(r"$\psi$")
 pyplot.legend(loc=(0.8, 0.3))
 pyplot.ylim(-3, 1)
-draw_classic_axes(ax)
+pyplot.xticks([r_1, r_2], ["$r_1$", "$r_2$"])
+pyplot.yticks([])
+draw_classic_axes(ax, xlabeloffset=0.17)
 ```
 
 ### Bonding and antibonding orbitals
+
 If we decrease the interatomic distance, the two atoms get closer and their atomic orbitals start to overlap more.
 This increase in orbital overlap increases the hopping $t$.
 We plot the symmetric and anti-symmetric energies as a function of the inter-atomic distance:
@@ -264,6 +267,8 @@ ax.set_xlabel("$r$")
 ax.set_ylabel("$E$")
 ax.set_xlim(-.1, 3.2)
 ax.legend()
+ax.set_xticks([])
+ax.set_yticks([])
 draw_classic_axes(ax)
 ```
 
@@ -285,7 +290,9 @@ On the other hand, if each atom has 0 or 2 electrons in the outermost shell, the
 * If two atoms have one orbital and one electron each, the two electrons occupy the bonding orbital.
 
 ## Exercises
+
 ### Warm-up questions*
+
 1. Is the assumption that the atomic orbitals are orthogonal always a reasonable assumption?
 2. What is the effect on the molecular orbitals if the hopping $t$ is chosen to be negative?
 3. How does the size of the Hamiltonian matrix change with the number of atoms?
diff --git a/docs/6_bonds_and_spectra.md b/docs/6_bonds_and_spectra.md
index a15c5406a3adc85c10e586a6f08321a422f34ad5..10528263284d79977cc33363b1d6b4a89fbffb65 100644
--- a/docs/6_bonds_and_spectra.md
+++ b/docs/6_bonds_and_spectra.md
@@ -48,6 +48,8 @@ ax.plot(r, Q - U, label="$E_+$")
 ax.set_xlabel("$r$")
 ax.set_ylabel("$E$")
 ax.set_xlim(-.1, 3.2)
+ax.set_xticks([])
+ax.set_yticks([])
 ax.legend()
 draw_classic_axes(ax)
 ```
diff --git a/docs/7_tight_binding.md b/docs/7_tight_binding.md
index 36179cad8f8d941a6d178895f4742104aef7bfa1..ae98626ec496f7716375e8ef1af3b18bbcec4a2c 100644
--- a/docs/7_tight_binding.md
+++ b/docs/7_tight_binding.md
@@ -80,7 +80,7 @@ ax.set_xlabel("$x$")
 ax.set_ylabel("$U(x)$")
 ax.set_xticks([-.05, 1, 2])
 ax.set_xticklabels(["$0$", "$a$", "$2a$"])
-
+ax.set_yticks([])
 draw_classic_axes(ax)
 ```
 
@@ -153,6 +153,8 @@ ax.set_xlabel('$x$')
 ax.set_ylabel('$u_n$')
 ax.set_xlim((-.1, 3.2))
 ax.set_ylim((-1.3, 1.3))
+ax.set_xticks([])
+ax.set_yticks([])
 ax.legend(loc='lower right')
 draw_classic_axes(ax)
 ax.annotate('', xy=(0, -1.1), xytext=(1, -1.1),
@@ -280,7 +282,7 @@ ax.set_xlabel("$x$")
 ax.set_ylabel("$U(x)$")
 ax.set_xticks([-.05, 1, 2])
 ax.set_xticklabels(["$0$", "$a$", "$2a$"])
-
+ax.set_yticks([])
 draw_classic_axes(ax)
 ```
 
diff --git a/docs/8_many_atoms.md b/docs/8_many_atoms.md
index 4d15e5c821ae4380a01fe35a6fb0624b5ed4c79a..51fa3aef6b7a452320e84825110947b3f0b48ece 100644
--- a/docs/8_many_atoms.md
+++ b/docs/8_many_atoms.md
@@ -95,11 +95,7 @@ $$
 \omega^2=\frac{\kappa(m_1+m_2)}{m_1m_2}\pm \kappa\left\{\left(\frac{m_1+m_2}{m_1m_2}\right)^2-\frac{4}{m_1m_2}\sin^2\left(\frac{1}{2}ka\right)\right\}^{\frac{1}{2}}
 $$
 
-Looking at the eigenvectors we see that for every $k$ there are now two values of $\omega$: one corresponding to in-phase motion (–) and anti-phase (+).
-
-<!---
-Should we mention that we choose omega > 0?
---->
+Looking at the eigenvectors we see that for every $k$ there are now two positive values of $\omega$: one corresponding to in-phase motion (–) and anti-phase (+).
 
 ```python
 def dispersion_2m(k, kappa=1, M=1.4, m=1, acoustic=True):
@@ -185,6 +181,7 @@ ax2.set_ylabel(r'$\omega$')
 # Truncate the singularity in the DOS
 max_x = ax2.get_xlim()[1]
 ax2.set_xlim((0, max_x/2))
+ax2.set_xticks([])
 draw_classic_axes(ax2, xlabeloffset=.1)
 matplotlib.rcParams['font.size'] = 16
 ```
diff --git a/docs/lecture_8.md b/docs/lecture_8.md
index 289bb3804e3481576b91b718ba7855e4adacf045..87fc46aa74a296f3e191d67c53ec9ed42f95ec12 100644
--- a/docs/lecture_8.md
+++ b/docs/lecture_8.md
@@ -23,6 +23,7 @@ In this lecture we will:
 - discuss magnetic order
 
 ### Magnetic field
+
 To start off confusing, there are two different quantities that are often referred to as the _magnetic field_: the ${\bf B}$-field (in units of Tesla) and the ${\bf H}$-field (in A/m). In vacuum, they are proportional:
 
 $$
@@ -104,6 +105,8 @@ ax.plot(B, np.tanh(B), label="high $T$")
 ax.legend()
 ax.set_ylabel("$M$")
 ax.set_xlabel("$B$")
+ax.set_xticks([])
+ax.set_yticks([])
 draw_classic_axes(ax, xlabeloffset=.2)
 ```