diff --git a/src/12_band_structures_in_higher_dimensions_solutions.md b/src/12_band_structures_in_higher_dimensions_solutions.md new file mode 100644 index 0000000000000000000000000000000000000000..baafb421130dc4eda4b6526838d9a82e6cb6279d --- /dev/null +++ b/src/12_band_structures_in_higher_dimensions_solutions.md @@ -0,0 +1,106 @@ +```python tags=["initialize"] +from matplotlib import pyplot as plt +import numpy as np +from math import pi +``` +# Solutions for lecture 12 exercises + +## Exercise 1: 3D Fermi surfaces + +### Subquestion 1 + +Well described: (close to) spherical. + +### Subquestion 2 + +K is more spherical, hence 'more' free electron model. Li is less spherical, hence 'more' nearly free electron model. Take a look at Au, and see whether you can link this to what you learned in lecture 11. + +### Subquestion 3 + +Yes. Cubic -> unit cell contains one atom -> monovalent -> half filled band -> metal. + +### Subquestion 4 +With Solid State knowledge: Na has 1 valence electron, Cl has 7. Therefore, a unit cell has an even number of electrons -> insulating. + +Empirical: Salt is transparent, Fermi level must be inside a large bandgap -> insulating. + +## Exercise 2: Tight binding in 2D + +### Subquestion 1 + +$$ E \phi_{n,m} = \varepsilon_0-t_1 \left(\phi_{m,n-1}+\phi_{m,n+1}\right) -t_2 \left(\phi_{m-1,n}+\phi_{m+1,n}\right) $$ + +### Subquestion 2 + +$$ \psi_n(\mathbf{r}) = u_n(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{r}} \quad \leftrightarrow \quad \phi_{n,m} = \phi_0 e^{i(k_x a_x + k_y a_y)}$$ + +### Subquestion 3 + +$$ E = \varepsilon_0 -2t_1 \cos(k_x a_x) -2t_2 \cos(k_y a_y)$$ + +### Subquestion 4 and 5 + +Monovalent -> half filled bands -> rectangle rotated 45 degrees. + +Much less than 1 electron per unit cell -> almost empty bands -> circular. + +```python +def dispersion2D(N=100, kmax=pi, e0=2): + + # Define matrices with wavevector values + kx = np.tile(np.linspace(-kmax, kmax, N),(N,1)) + ky = np.transpose(kx) + + # Plot dispersion + plt.figure(figsize=(6,5)) + plt.contourf(kx, ky, e0-np.cos(kx)-np.cos(ky)) + + # Making things look ok + cbar = plt.colorbar(ticks=[]) + cbar.set_label('$E$', fontsize=20, rotation=0, labelpad=15) + plt.xlabel('$k_x$', fontsize=20) + plt.ylabel('$k_y$', fontsize=20) + plt.xticks((-pi, 0 , pi),('$-\pi/a$','$0$','$\pi/a$'), fontsize=17) + plt.yticks((-pi, 0 , pi),('$-\pi/a$','$0$','$\pi/a$'), fontsize=17) + +dispersion2D() +``` + +## Exercise 3: Nearly-free electron model in 2D + +### Subquestion 1 + +Construct the Hamiltonian with basis vectors $(\pi/a,0)$ and $(-\pi/a,0)$, eigenvalues are + +$$ E=\frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 \pm \left|V_{10}\right|^2. $$ + +### Subquestion 2 + +Four in total: $(\pm\pi/a,\pm\pi/a)$. + +### Subquestion 3 + +Define a basis, e.g. +\begin{align} + \left|0\right\rangle &= (\pi/a,\pi/a) \\ + \left|1\right\rangle &= (\pi/a,-\pi/a) \\ + \left|2\right\rangle &= (-\pi/a,-\pi/a) \\ + \left|3\right\rangle &= (-\pi/a,\pi/a) +\end{align} +The Hamiltonian becomes + +$$ +\hat{H}= +\begin{pmatrix} + \varepsilon_0 & V_{10} & V_{11} & V_{10} \\ + V_{10} & \varepsilon_0 & V_{10} & V_{11} \\ + V_{11} & V_{10} & \varepsilon_0 & V_{10} \\ + V_{10} & V_{11} & V_{10} & \varepsilon_0 \\ +\end{pmatrix} +$$ + +### Subquestion 4 + +$$ E = \varepsilon_0 + V_{11} \quad \text{and}\quad E = \varepsilon_0 - V_{11} \pm \left|V_{10}\right|^2 $$ + +