diff --git a/src/2_debye_model_solutions.md b/src/2_debye_model_solutions.md index 3c00cd6ece65d73764e7ccc37105dd3f13102697..02275447575bd1445018283e23938bafd27a34c6 100644 --- a/src/2_debye_model_solutions.md +++ b/src/2_debye_model_solutions.md @@ -14,7 +14,7 @@ $$ We assume that in $d$ dimensions there are $d$ polarizations. -For 1D we have that $N = \frac{L}{2\pi}\int dk$, hence $g(\omega) = \frac{L}{2\pi v}$. +For 1D we have that $N = \frac{L}{2\pi}\int_{-k}^{k} dk$, hence $g(\omega) = \frac{L}{\pi v}$. For 2D we have that $N = 2\left(\frac{L}{2\pi}\right)^2\int d^2k = 2\left(\frac{L}{2\pi}\right)^2\int 2\pi kdk$, hence $g(\omega) = \frac{L^2\omega}{\pi v^2}$.