diff --git a/src/2_debye_model_solutions.md b/src/2_debye_model_solutions.md
index 3c00cd6ece65d73764e7ccc37105dd3f13102697..02275447575bd1445018283e23938bafd27a34c6 100644
--- a/src/2_debye_model_solutions.md
+++ b/src/2_debye_model_solutions.md
@@ -14,7 +14,7 @@ $$
 
 We assume that in $d$ dimensions there are $d$ polarizations.
 
-For 1D we have that $N = \frac{L}{2\pi}\int dk$, hence $g(\omega) = \frac{L}{2\pi v}$.
+For 1D we have that $N = \frac{L}{2\pi}\int_{-k}^{k} dk$, hence $g(\omega) = \frac{L}{\pi v}$.
 
 For 2D we have that $N = 2\left(\frac{L}{2\pi}\right)^2\int d^2k = 2\left(\frac{L}{2\pi}\right)^2\int 2\pi kdk$, hence $g(\omega) = \frac{L^2\omega}{\pi v^2}$.