From faa283991dec3797db040617a40e97e20041a6fd Mon Sep 17 00:00:00 2001 From: "T. van der Sar" <t.vandersar@tudelft.nl> Date: Thu, 24 Feb 2022 22:16:36 +0000 Subject: [PATCH] Update 5_atoms_and_lcao_solutions.md - corrected solution last ex --- docs/5_atoms_and_lcao_solutions.md | 28 +++++++++++++++------------- 1 file changed, 15 insertions(+), 13 deletions(-) diff --git a/docs/5_atoms_and_lcao_solutions.md b/docs/5_atoms_and_lcao_solutions.md index 1087b566..e1020733 100644 --- a/docs/5_atoms_and_lcao_solutions.md +++ b/docs/5_atoms_and_lcao_solutions.md @@ -91,26 +91,28 @@ $$ The eigenstates of the Hamiltonian are given by: $$ - E_{\pm} = E_0\pm\sqrt{t^2+\gamma^2} + E_{\mp} = E_0\pm\sqrt{t^2+\gamma^2} $$ -Calling the elements of the eigenvector $\alpha$ and $\beta$, we find +Calling the elements of the eigenvector $\phi_1$ and $\phi_2$, we find $$ -\alpha(E_0-\gamma)-\beta t = \alpha E_\pm +\phi_1(E_0-\gamma)-\phi_2 t = \phi_1 E_\pm $$ -From this we find +From this we find for the ground state $$ -\beta = -\frac{E_\pm- E_0 + \gamma}{t}\alpha = -\frac{\pm\sqrt{t^2+ \gamma^2} + \gamma }{t}\alpha +\phi_2 = -\frac{E_+- E_0 + \gamma}{t}\phi_1 = \frac{\sqrt{t^2+ \gamma^2} - \gamma }{t}\phi_1 $$ -Then, using the normalization condition $\alpha^2+\beta^2$=1, we find the normalized eigenfunction. -%The ground state wave function is: -%$$ -% |\psi⟩ &= \frac{\gamma+\sqrt{t^2+\gamma^2}}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|1⟩+\frac{t}{\sqrt{(\gamma+\sqrt{\gamma^2+t^2})^2+t^2}}|2⟩ -% \end{split} -%$$ +For simplicity, we now assume that the electric field is small, such that $\gamma/t=\eta \ll 1$. We get +$$ +\phi_2 \approx (1-\eta)\phi_1 +$$ +Then, using the normalization condition $\phi_1^2+\phi_2^2$=1, we find +$$ +\phi_1\approx\frac{1}{\sqrt{2(1-\eta)}} +$$ #### Question 4. - +We find the polarization using $$ - P = -\frac{2\gamma^2}{\mathcal{E}}(\frac{1}{\sqrt{\gamma^2+t^2}}) +P=2e\langle\psi|\hat{x}|\psi\rangle = 2e\phi_1^2\langle 1|\hat{x}| 1 \rangle + \phi_1^2\langle 2|\hat{x}| 2 \rangle = ed(\phi_2^2-\phi_1^2) =ed\frac{\eta}{1-\eta} $$ -- GitLab