--- jupyter: jupytext: text_representation: extension: .md format_name: markdown format_version: '1.0' jupytext_version: 0.8.6 kernelspec: display_name: Python 3 language: python name: python3 --- ```python tags=["initialize"] from matplotlib import pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import numpy as np from scipy.optimize import curve_fit from scipy.integrate import quad from common import draw_classic_axes, configure_plotting configure_plotting() ``` # Solutions for lecture 1 exercises ### Warm-up exercises 1. An ideal gas only contains 3 positional degrees of freedom. 2. $C = 2k_B$. 3. See image below (with $T_1 < T_2$) 4. Minus sign in the exponent. This would result in $n_B(T = 0) = -1$, which is not physical. 5. See plot with slider ```python fig, ax = plt.subplots() omega = np.linspace(0.1, 3) T = [1,2] ax.plot(omega, 1/(np.exp(omega/T[0]) - 1), label = r'$T_1$') ax.plot(omega, 1/(np.exp(omega/T[1]) - 1), label = r'$T_2$') ax.set_ylim([0,3]) ax.set_xlim([0,3]) ax.set_xlabel('$\hbar \omega$') ax.set_xticks([0]) ax.set_xticklabels(['$0$']) ax.set_ylabel('$n_B$') ax.set_yticks([0,1, 2]) ax.set_yticklabels(['$0$','$1$', '$2$']) ax.legend() draw_classic_axes(ax, xlabeloffset=.2) ``` ### Exercise 1: Heat capacity of a classical oscillator. 1. The answer is $$ Z = \int_{-\infty}^{\infty}dp \int_{-\infty}^{\infty} dx e^{-\frac{\beta}{2m}p^2-\frac{\beta k}{2}x^2} = \sqrt{\frac{2\pi m}{\beta}}\sqrt{\frac{2\pi}{\beta k}} = \frac{2\pi}{\beta}\sqrt{\frac{m}{k}}, $$ where we used $\int_{-\infty}^{\infty}e^{-\alpha x^2} = \sqrt{\frac{\pi}{\alpha}}$. 2. $$ \langle E \rangle = -\frac{1}{Z}\frac{\partial Z}{\partial \beta} = \frac{1}{\beta} $$ 3. $$ C = \frac{\partial\langle E\rangle}{\partial T} = k_B $$ The heat capacity is temperature independent. ### Exercise 2: Quantum harmonic oscillator. 1. $$ Z = \sum_{n = 0}^{\infty} e^{-\beta\hbar\omega(n + 1/2)} = e^{-\beta\hbar\omega/2}\frac{1}{1 - e^{-\beta\hbar\omega}} = \frac{1}{2\sinh(\beta\hbar\omega/2)}, $$ where we used $\sum_{n = 0}^{\infty}r^n = \frac{1}{1 - r}$. 2. $$ \langle E\rangle = -\frac{1}{Z}\frac{\partial Z}{\partial\beta} = \frac{\hbar\omega}{2}\coth\frac{\beta\hbar\omega}{2} = \hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right) = \hbar\omega\left(n_B(\beta\hbar\omega) + \frac{1}{2}\right). $$ 3. $$ C = \frac{\partial \langle E\rangle}{\partial T} = \frac{\partial\langle E\rangle}{\partial\beta}\frac{\partial\beta}{\partial T} = k_B(\beta\hbar\omega)^2\frac{e^{\beta\hbar\omega}}{(e^{\beta\hbar\omega} - 1)^2}. $$ In the high temperature limit $\beta \rightarrow 0$ and $e^{\beta\hbar\omega} \approx 1 + \beta\hbar\omega$, so $C \rightarrow k_B$ which is the same result as in Exercise 1.3. 4. Compare your result with the plot with the slider. Did you correctly indicate the where the Einstein temperature is? 5. $$ \langle n\rangle = \frac{1}{Z}\sum_{n = 0}^{\infty} ne^{-\beta\hbar\omega(n + 1/2)} = 2\frac{e^{\beta\hbar\omega/2} - e^{-\beta\hbar\omega/2}}{2}e^{-\beta\hbar\omega/2}\frac{e^{-\beta\hbar\omega}}{(1 - e^{-\beta\hbar\omega})^2} = \frac{1}{e^{\beta\hbar\omega} - 1}, $$ where we used $\sum_{n = 0}^{\infty}nr^n = \frac{r}{(1 - r)^2}$. ### Exercise 3: Total heat capacity of a diatomic material. 1. Use the formula $\omega = \sqrt{\frac{k}{m}}$. 2. Energy per atom is given by $$ E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}(2 + 1/2) + \frac{N_{^7Li}}{N}\hbar\omega_{^7Li}(4 + 1/2). $$ 3. Energy per atom is given by $$ E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + \frac{N_{^7Li}}{N}\hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right). $$ 4. Heat capacity per atom is given by $$ C = \frac{N_{^6Li}}{N}C_{^6Li} + \frac{N_{^7Li}}{N}C_{^7Li}, $$ where the heat capacities are calculated with the formula from Excercise 2.4.