Skip to content
Snippets Groups Projects

Resolve "(LearnerND) add iso-surface plot feature"

Merged Jorn Hoofwijk requested to merge 112-learnernd-add-iso-surface-plot-feature into master
All threads resolved!
Compare and Show latest version
10 files
+ 279
121
Compare changes
  • Side-by-side
  • Inline
Files
10
+ 165
68
@@ -10,20 +10,11 @@ import scipy.spatial
from .base_learner import BaseLearner
from ..notebook_integration import ensure_holoviews
from ..notebook_integration import ensure_holoviews, ensure_plotly
from .triangulation import (Triangulation, point_in_simplex,
circumsphere, simplex_volume_in_embedding)
from ..utils import restore, cache_latest
try:
import plotly.graph_objs
import plotly.figure_factory
import plotly.offline
with_plotly = True
except ModuleNotFoundError:
with_plotly = False
def volume(simplex, ys=None):
# Notice the parameter ys is there so you can use this volume method as
@@ -472,6 +463,10 @@ class LearnerND(BaseLearner):
self._subtriangulations = dict()
self._pending_to_simplex = dict()
##########################
# Plotting related stuff #
##########################
def plot(self, n=None, tri_alpha=0):
"""Plot the function we want to learn, only works in 2D.
@@ -586,55 +581,51 @@ class LearnerND(BaseLearner):
else:
raise ValueError("Only 1 or 2-dimensional plots can be generated.")
def get_range(self):
r_min = min(self.data[v] for v in self.tri.vertices)
r_max = max(self.data[v] for v in self.tri.vertices)
return r_min, r_max
def _get_isosurface(self, level=0.0):
if self.ndim != 3 or self.vdim != 1:
raise Exception('isosurface is only supported for 3d input and 1d output')
raise Exception('Isosurface plotting is only supported'
' for a 3D input and 1D output')
vertices = [] # index -> (x,y,z)
faces = [] # tuple of indices of the corner points
from_line_to_vertex = {} # the interpolated vertex (index) between two known points
vertices = [] # index -> (x,y,z)
faces = [] # tuple of indices of the corner points
from_line_to_vertex = {} # the interpolated vertex (index) between two known points
def _get_vertex_index(a, b):
if (a, b) in from_line_to_vertex:
return from_line_to_vertex[(a, b)]
def get_vertex_index(a, b):
if (a,b) in from_line_to_vertex:
return from_line_to_vertex[(a,b)]
# otherwise compute it and cache the result
# Otherwise compute it and cache the result.
vertex_a = self.tri.vertices[a]
vertex_b = self.tri.vertices[b]
value_a = self.data[vertex_a]
value_b = self.data[vertex_b]
value_a = self.data[vertex_a]
value_b = self.data[vertex_b]
da = abs(value_a - level)
db = abs(value_b - level)
dab = da + db
new_pt = db / dab * np.array(vertex_a) + da / dab * np.array(vertex_b) # assuming they are numpy arrays
new_pt = (db / dab * np.array(vertex_a)
+ da / dab * np.array(vertex_b))
new_index = len(vertices)
vertices.append(new_pt)
from_line_to_vertex[(a,b)] = new_index
from_line_to_vertex[(a, b)] = new_index
return new_index
for simplex in self.tri.simplices:
plane = []
for a,b in itertools.combinations(simplex, 2):
for a, b in itertools.combinations(simplex, 2):
va = self.data[self.tri.vertices[a]]
vb = self.data[self.tri.vertices[b]]
if min(va,vb) < level <= max(va,vb):
vi = get_vertex_index(a, b)
if min(va, vb) < level <= max(va, vb):
vi = _get_vertex_index(a, b)
should_add = True
for pi in plane:
if np.allclose(vertices[vi], vertices[pi]):
should_add = False
if should_add:
plane.append(vi)
if len(plane) == 3:
faces.append(plane)
elif len(plane) == 4:
@@ -642,66 +633,172 @@ class LearnerND(BaseLearner):
faces.append(plane[1:])
if len(faces) == 0:
r_min, r_max = self.get_range()
r_min = min(self.data[v] for v in self.tri.vertices)
r_max = max(self.data[v] for v in self.tri.vertices)
raise ValueError(f"""Could not draw isosurface for level={level}, as
this value is not inside the function range. Please choose a level
strictly inside interval ({r_min}, {r_max})""")
raise ValueError(
f"Could not draw isosurface for level={level}, as"
" this value is not inside the function range. Please choose"
f" a level strictly inside interval ({r_min}, {r_max})"
)
return vertices, faces
def _get_isoline(self, level=0.0):
# Very similar to _get_isosurface, maybe merge the two functions
if self.ndim != 2 or self.vdim != 1:
raise Exception('Isoline plotting is only supported'
' for a 2D input and 1D output')
vertices = [] # index -> (x,y,z)
lines = [] # tuple of indices of the corner points
from_line_to_vertex = {} # the interpolated vertex (index) between two known points
def _get_vertex_index(a, b):
if (a, b) in from_line_to_vertex:
return from_line_to_vertex[(a, b)]
# Otherwise compute it and cache the result.
vertex_a = self.tri.vertices[a]
vertex_b = self.tri.vertices[b]
value_a = self.data[vertex_a]
value_b = self.data[vertex_b]
da = abs(value_a - level)
db = abs(value_b - level)
dab = da + db
new_pt = (db / dab * np.array(vertex_a)
+ da / dab * np.array(vertex_b))
new_index = len(vertices)
vertices.append(new_pt)
from_line_to_vertex[(a, b)] = new_index
return new_index
for simplex in self.tri.simplices:
line = []
for a, b in itertools.combinations(simplex, 2):
va = self.data[self.tri.vertices[a]]
vb = self.data[self.tri.vertices[b]]
if min(va, vb) < level <= max(va, vb):
vi = _get_vertex_index(a, b)
should_add = True
for pi in line:
if np.allclose(vertices[vi], vertices[pi]):
should_add = False
if should_add:
line.append(vi)
if len(line) == 2:
lines.append(line)
if len(lines) == 0:
r_min = min(self.data[v] for v in self.tri.vertices)
r_max = max(self.data[v] for v in self.tri.vertices)
raise ValueError(
f"Could not draw isosurface for level={level}, as"
" this value is not inside the function range. Please choose"
f" a level strictly inside interval ({r_min}, {r_max})"
)
return vertices, lines
def plot_isoline(self, level=0.0, n=None, tri_alpha=0):
"""Plot the isoline at a specific level of the function we want to
learn, only works in 2D.
Parameters
----------
level : float
the value of the function at which you would like to see the isoline
n : int
the number of boxes in the interpolation grid along each axis
"""
hv = ensure_holoviews()
if n == -1:
plot = hv.Path([])
else:
plot = self.plot(n=n, tri_alpha=tri_alpha)
if isinstance(level, Iterable):
for l in level:
plot = plot * self.plot_isoline(level=l, n=-1)
return plot
vertices, lines = self._get_isoline(level)
paths = [[vertices[i], vertices[j]] for i,j in lines]
contour = hv.Path(paths)
contour_opts = dict(color='black')
contour = contour.opts(style=contour_opts)
return plot * contour
def plot_isosurface(self, level=0.0, hull_opacity=0.2):
"""Plots the linearly interpolated iso-surface of the function, based on
the currently evaluated points. This is the 3d analog of an iso-line.
"""Plots the linearly interpolated isosurface of the function,
based on the currently evaluated points. This is the 3D analog
of an isoline.
Parameters
----------
level : number
the function value which you are interested in. Defaults to 0.0.
hull_opacity : number
the opacity of the hull of the domain. Defaults to 0.2
level : float, default 0.0
the function value which you are interested in.
hull_opacity : float, default 0.0
the opacity of the hull of the domain.
Returns
-------
plot : plotly.offline.iplot object
The plot object of the isosurface.
"""
if not with_plotly:
raise Exception('plot_isosurface requires plotly to be installed')
plotly = ensure_plotly()
vertices, faces = self._get_isosurface(level)
x,y,z = zip(*vertices)
x, y, z = zip(*vertices)
fig = plotly.figure_factory.create_trisurf(x=x,
y=y,
z=z,
plot_edges=False,
simplices=faces,
title="Isosurface")
fig = plotly.figure_factory.create_trisurf(
x=x, y=y, z=z, plot_edges=False,
simplices=faces, title="Isosurface")
isosurface = fig.data[0]
isosurface.update(lighting=dict(ambient=1, diffuse=1, roughness=1, specular=0, fresnel=0))
if hull_opacity < 1e-3:
# do not compute the hull_mesh
# Do not compute the hull_mesh.
return plotly.offline.iplot(fig)
hull_mesh = self._get_hull_mesh(opacity=hull_opacity)
return plotly.offline.iplot([fig.data[0], hull_mesh])
return plotly.offline.iplot([isosurface, hull_mesh])
def _get_hull_mesh(self, opacity=0.2):
plotly = ensure_plotly()
hull = scipy.spatial.ConvexHull(self._bounds_points)
# find the colors of each plane, giving triangles which are coplanar the
# same color, such that a square face has the same color.
# Find the colors of each plane, giving triangles which are coplanar
# the same color, such that a square face has the same color.
color_dict = {}
def get_plane_color(simplex):
simplex= tuple(simplex)
# if the volume of the two triangles combined is zero then they belong to the same plane
def _get_plane_color(simplex):
simplex = tuple(simplex)
# If the volume of the two triangles combined is zero then they
# belong to the same plane.
for simplex_key, color in color_dict.items():
points = np.array([hull.points[i] for i in np.unique(simplex_key + simplex)])
points = [hull.points[i] for i in set(simplex_key + simplex)]
points = np.array(points)
if np.linalg.matrix_rank(points[1:] - points[0]) < 3:
return color
if scipy.spatial.ConvexHull(points).volume < 1e-5:
return color
color_dict[simplex] = (random.randint(0,255),random.randint(0,255),random.randint(0,255))
color_dict[simplex] = tuple(random.randint(0, 255)
for _ in range(3))
return color_dict[simplex]
colors = [get_plane_color(simplex) for simplex in hull.simplices]
colors = [_get_plane_color(simplex) for simplex in hull.simplices]
x,y,z = zip(*self._bounds_points)
i,j,k = hull.simplices.T
return plotly.graph_objs.Mesh3d(x=x, y=y, z=z, i=i, j=j, k=k, facecolor=(colors), opacity=opacity)
\ No newline at end of file
x, y, z = zip(*self._bounds_points)
i, j, k = hull.simplices.T
lighting = dict(ambient=1, diffuse=1, roughness=1, specular=0, fresnel=0)
return plotly.graph_objs.Mesh3d(x=x, y=y, z=z, i=i, j=j, k=k,
facecolor=colors, opacity=opacity,
lighting=lighting)
Loading