Skip to content
Snippets Groups Projects

Update src/solutions/1_einstein_model.md, mkdocs.yml files

Merged Anton Akhmerov requested to merge solutions-lecture-1 into master
Files
4
---
jupyter:
jupytext:
text_representation:
extension: .md
format_name: markdown
format_version: '1.0'
jupytext_version: 1.0.2
---
# Solutions for lecture 1 exercises
### Exercise 1: Heat capacity of a classical oscillator.
@@ -84,12 +74,12 @@ Use the formula $\omega = \sqrt{\frac{k}{m}}$.
2.
$E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}(2 + 1/2)+\frac{N_{^7Li}}{N}\hbar\omega_{^7Li}(4 + 1/2)$.
$E = N_{^6Li}\hbar\omega_{^6Li}(2 + 1/2)+N_{^7Li}\hbar\omega_{^7Li}(4 + 1/2)$.
3.
$E = \hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + \hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right)$.
$E = N_{^6Li}\hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + N_{^7Li}\hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right)$.
4.
$C = C_{^6Li} + C_{^7Li}$ where the heat capacities are calculated with the formula from Excercise 2.4.
$C = \frac{N_{^6Li}}{N}C_{^6Li} + \frac{N_{^7Li}}{N}C_{^7Li}$ where the heat capacities are calculated with the formula from Excercise 2.4.
Loading