Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 38
5
Compare changes
  • Side-by-side
  • Inline
```{python initialize=true}
import matplotlib
from matplotlib import pyplot
import numpy as np
from common import draw_classic_axes, configure_plotting
configure_plotting()
pi = np.pi
```
# Solutions for lecture 7 exercises
### Exercise 1: Lattice vibrations
1.
Hint: Normal modes have the same function as $$\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$$ in $$\mathbb{R}^3$$
Hint: Normal modes have the same function as $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$ have in $\mathbb{R}^3$.
Hint: The lectures concerns atom vibrations, so what will a phonon be?
??? Final Hint
??? hint "Major hint"
What's the question's title?
Hint: What kind of particles obey Bose-Einstein statistics? What kind of 'particles' are phonons?
2.
Group velocity is given as $$v=\hbar^-1 \frac{\partial E}{\partial k}
2.
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\hbar\omega$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}} = a\sqrt{\frac{\kappa}{m}}\cos(\frac{ka}{2})$$ $$ g(\omega) = \frac{L}{2\pi}\frac{d}{d\omega} \bigg [\frac{2}{a}\sin^{-1}(\sqrt{\frac{m}{\kappa}}\frac{\omega}{2}) \bigg ] = \frac{L}{2\pi a} \sqrt{\frac{m}{\kappa}} \frac{1}{\sqrt{1-\frac{m\omega^2}{4\kappa}}}$$
```python
pyplot.figure()
pyplot.subplot(1,2,1)
k = np.linspace(-pi/2, pi/2, 300)
pyplot.plot(k, np.cos(k))
pyplot.xlabel('$k$'); pyplot.ylabel('$v(k)$')
pyplot.xticks([-pi/2, 0, pi/2], [r'$-\pi/2$', 0, r'$\pi/2$'])
pyplot.yticks([0, 1], [0, r'$2\sqrt{\frac{\kappa}{m}}$'])
pyplot.hlines([1], -pi/2, 0, linestyles='dashed')
pyplot.subplot(1,2,2)
k = np.linspace(-pi/2, pi/2, 300)
pyplot.plot(k, np.cos(k))
pyplot.xlabel('$k$'); pyplot.ylabel('$v(k)$')
pyplot.xticks([-pi/2, 0, pi/2], [r'$-\pi/2$', 0, r'$\pi/2$'])
pyplot.yticks([0, 1], [0, r'$2\sqrt{\frac{\kappa}{m}}$'])
pyplot.hlines([1], -pi/2, 0, linestyles='dashed')
```
Loading