Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 41
2
Compare changes
  • Side-by-side
  • Inline
```{python initialize=true}
import matplotlib
from matplotlib import pyplot
import numpy as np
from common import draw_classic_axes, configure_plotting
configure_plotting()
pi = np.pi
```
# Solutions for lecture 7 exercises
### Exercise 1: Lattice vibrations
@@ -14,6 +27,32 @@ Hint: The lectures concerns atom vibrations, so what will a phonon be?
Hint: What kind of particles obey Bose-Einstein statistics? What kind of 'particles' are phonons?
2.
2.
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\hbar\omega$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}} = a\sqrt{\frac{\kappa}{m}}\cos(\frac{ka}{2})$$ $$ g(\omega) = \frac{L}{2\pi}\frac{d}{d\omega} \bigg [\frac{2}{a}\sin^{-1}(\sqrt{\frac{m}{\kappa}}\frac{\omega}{2}) \bigg ] = \frac{L}{2\pi a} \sqrt{\frac{m}{\kappa}} \frac{1}{\sqrt{1-\frac{m\omega^2}{4\kappa}}}$$
3.
```python
##pyplot.subplot(1,2,1)
##k = np.linspace(-pi/2, pi/2, 300)
##pyplot.plot(k, np.cos(k))
##pyplot.xlabel('$k$'); pyplot.ylabel('$v(k)$')
##pyplot.xticks([-pi/2, 0, pi/2], [r'$-\pi/2$', 0, r'$\pi/2$'])
##pyplot.yticks([0, 1], [0, r'$2\sqrt{\frac{\kappa}{m}}$'])
##pyplot.hlines([1], -pi/2, 0, linestyles='dashed')
pyplot.subplot(1,2,2)
w = np.linspace(-0.95, 0.95, 300)
g = 1/np.sqrt(1-w**2)
pyplot.plot(w, g)
pyplot.xlabel(r'$\omega$'); pyplot.ylabel('$g(w)$')
pyplot.xticks([-1, 0, 1], [r'$-2\sqrt{\frac{k}{m}}$', 0, r'$2\sqrt{\frac{k}{m}}$'])
pyplot.yticks([0, 1], [0, r'$\frac{L}{2\pi a}\sqrt{\frac{\kappa}{m}}$'])
pyplot.hlines([1], -pi/2, 0, linestyles='dashed')
```
4.
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$ with $E=\hbar\omega$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}} = a\sqrt{\frac{\kappa}{m}}\cos(\frac{ka}{2})$$ $$ g(k) = \frac{L}{2\pi}\frac{d}{d\omega} \big (\frac{2}{a}\sin^{-1}(\sqrt{\frac{m}{\kappa}}\frac{\omega}{2}) \big ) = \frac{L}{2\pi a} \sqrt{\frac{m}{\kappa}} \frac{1}{\sqrt{1-\frac{m\omega^2}{4\kappa}}}$$
Loading