Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 14
14
Compare changes
  • Side-by-side
  • Inline
@@ -35,24 +35,24 @@ Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\
```python
pyplot.subplot(1,2,1)
k = np.linspace(-pi/2, pi/2, 300)
pyplot.plot(k, np.cos(k))
pyplot.xlabel('$k$'); pyplot.ylabel('$v(k)$')
pyplot.xticks([-pi/2, 0, pi/2], [r'$-\pi/2$', 0, r'$\pi/2$'])
pyplot.yticks([0, 1], [0, r'$2\sqrt{\frac{\kappa}{m}}$'])
pyplot.hlines([1], -pi/2, 0, linestyles='dashed')
k = np.linspace(-pi/2+0.01, pi/2-0.01, 300)
pyplot.plot(k, np.sin(k)/(np.sqrt(1-np.cos(k)));
pyplot.xlabel('$k$'); pyplot.ylabel('$v(k)$');
pyplot.xticks([-pi/2, 0, pi/2], [r'$-\pi/2$', 0, r'$\pi/2$']);
pyplot.yticks([0, 1], [0, r'$2\sqrt{\frac{\kappa}{m}}$']);
pyplot.tight_layout();
pyplot.subplot(1,2,2)
w = np.linspace(-0.95, 0.95, 300)
g = 1/np.sqrt(1-w**2)
pyplot.plot(w, g)
pyplot.xlabel(r'$\omega$'); pyplot.ylabel('$g(w)$')
pyplot.xticks([-1, 0, 1], [r'$-2\sqrt{\frac{k}{m}}$', 0, r'$2\sqrt{\frac{k}{m}}$'])
pyplot.yticks([0, 1], [0, r'$\frac{L}{2\pi a}\sqrt{\frac{\kappa}{m}}$'])
pyplot.hlines([1], -pi/2, 0, linestyles='dashed')
w = np.linspace(-0.95, 0.95, 300);
g = 1/np.sqrt(1-w**2);
pyplot.plot(w, g);
pyplot.xlabel(r'$\omega$'); pyplot.ylabel('$g(w)$');
pyplot.xticks([-1, 0, 1], [r'$-2\sqrt{\frac{k}{m}}$', 0, r'$2\sqrt{\frac{k}{m}}$']);
pyplot.yticks([0.5, 1], [0, r'$\frac{L}{2\pi a}\sqrt{\frac{\kappa}{m}}$']);
pyplot.tight_layout();
```
4.
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$.
Loading