Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 20
4
Compare changes
  • Side-by-side
  • Inline
@@ -19,7 +19,7 @@ pi = np.pi
Hint: Normal modes have the same function as $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3$ have in $\mathbb{R}^3$. That is, for every vector $\mathbf{v}$ we have $\mathbf{v} = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3$.
Hint: The lectures concerns atom vibrations, so what will a phonon be?
Hint: The lecture concerns atom vibrations, so what will a phonon be?
??? hint "Major hint"
@@ -29,7 +29,7 @@ Hint: What kind of particles obey Bose-Einstein statistics? What kind of 'partic
### Subquestion 2
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\hbar\omega$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}}$$ $$ g(\omega) = \frac{L}{2\pi}\frac{d}{d\omega} \bigg [\frac{2}{a}\sin^{-1}\big(\sqrt{\frac{m}{\kappa}}\frac{\omega}{2} \big) \bigg ] = \frac{L}{2\pi a} \sqrt{\frac{m}{\kappa}} \frac{1}{\sqrt{1-\frac{m\omega^2}{4\kappa}}}$$
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\hbar\omega$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}}$$ $$ g(\omega) = \frac{L}{2\pi}\frac{d}{d\omega} \bigg [\frac{2}{a}\sin^{-1}\bigg(\sqrt{\frac{m}{\kappa}}\frac{\omega}{2} \bigg) \bigg ] \\ = \frac{L}{\pi a} \frac{1}{\sqrt{\frac{4\kappa}{m}-\omega^2}}$$
### Subquestion 3
@@ -55,9 +55,25 @@ pyplot.tight_layout();
### Subquestion 4
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1} \approx \frac{1}{\frac{d\omega}{dk}}$ (This is **definately** not an equality sign, but you use this 'approximation' to graph the density of states).
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1} \approx \frac{1}{\frac{d\omega}{dk}}$ (This is **definitely** not an equality sign, but you can use this 'approximation' to graph the density of states).
??? hint "Plot for density of states"
??? hint "Plots"
![](figures/dispersion_groupv_dos.svg)
## Exercise 2: Vibrational heat capacity of a 1D monatomic chain
### Subquestion 1
For the energy we have: $$U = \int \hbar \omega g(\omega) (n(\omega,T) + \frac{1}{2})d\omega$$ with $g(\omega)$ as in Exercise 1 subquestion 2 and $n(\omega,T) = \frac{1}{e^{\hbar\omega/k_BT}-1}$.
### Subquestion 2
For the heat capacity we have: $$C = \frac{\partial U}{\partial T} = \int g(\omega) \hbar\omega \frac{\partial n(\omega,T)}{\partial T}d\omega$$
## Exercise 3: Next-nearest neighbors chain
### Subquestion 1
The Schrödinger equation is given as: $$ E|\phi_n> = \sum_m \hat H|\phi_m>$$
Loading