Solutions lecture 7
Compare changes
Files
4+ 115
− 0
@@ -26,3 +26,118 @@ Hint: The lecture concerns atom vibrations, so what will a phonon be?
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\hbar\omega$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}}$$ $$ g(\omega) = \frac{L}{2\pi}\frac{d}{d\omega} \bigg [\frac{2}{a}\sin^{-1}\bigg(\sqrt{\frac{m}{\kappa}}\frac{\omega}{2} \bigg) \bigg ] \\ = \frac{L}{\pi a} \frac{1}{\sqrt{\frac{4\kappa}{m}-\omega^2}}$$
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1}$.