Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
3 files
+ 68
20
Compare changes
  • Side-by-side
  • Inline
Files
3
+ 67
0
```{python initialize=true}
import matplotlib
from matplotlib import pyplot
import numpy as np
from common import draw_classic_axes, configure_plotting
configure_plotting()
pi = np.pi
```
# Solutions for lecture 8 exercises
## Exercise 1: analyzing the diatomic vibrating chain
### Subquestion 1
Accoustic branch corresponds with (-) in the equation given in the lecture notes. Use the small angle approximation $\sin(k) \approx k$ to ease calculations. For the Taylor polynomial take $\omega^2 = f(x) \approx f(0) + f'(0)k + f''(0)k^2$ (some terms vanish, computation is indeed quite tedious). You should find: $$|v_g| = \sqrt{\frac{\kappa a^2}{2(m_a+m_2)}}$$
### Subquestion 2
Optical branch corresponds with (+) in the equation given in the lecture notes. Again use small angle approximation to easy calculations. Find the Taylor polynomial and show that $$|v_g|=0$$
### Subquestion 3
Density of states is given as $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. $\frac{dN}{dk} = \frac{L}{2\pi}$ since we have 1D. $\frac{dk}{d\omega}$ can be computed using the group velocity: $$\frac{dk}{d\omega} = \bigg(\frac{d\omega}{dk} \bigg)^{-1} = (v_g)^{-1}$$
## Exercise 2: the Peierls transition
### Subquestion 1
A unit cell consits of exactly one $t_1$ and exactly $t_2$ hopping.
### Subquestion 2
Using the hint we find:
$$ E \phi_0 = \epsilon \phi_0 + t_1 \psi_0 + t_2 \psi_{n-1} $$
$$ E \psi_0 = \epsilon \psi_0 + t_2 \phi_{n+1} + t_2 \phi_0 $$
Notice that the hopping, in this case, is without the '-'-sign!
### Subquestion 3
Using the Ansatz and rearranging the equation yields:
$$ E \begin{pmatrix} \phi_0 \\ \psi_0 \end{pmatrix} =
\begin{pmatrix} \epsilon & t_1 + t_2 e^{-ika} \\ t_1 + t_2 e^{ika} & \epsilon \end{pmatrix}
\begin{pmatrix} \phi_0 \\ \psi_0 \end{pmatrix}
$$
### Subquestion 4
The dispersion is given by: $$ E = \epsilon \pm \sqrt{t_1^2 + t_2^2 + 2t_1t_2\cos(ka)} $$
```python
pyplot.figure()
k = np.linspace(-2*pi, 2*pi, 300)
pyplot.plot(k, np.sqrt(5+2*2*np.cos(k)),'b')
pyplot.plot(k, -np.sqrt(5+2*2*np.cos(k)),'b')
pyplot.plot(k, -3*np.cos(k/2),'r')
pyplot.xlabel('$ka$'); pyplot.ylabel(r'$E-\epsilon$')
pyplot.xticks([-pi, 0, pi], [r'$ka$', 0, r'$ka$'])
pyplot.yticks([-3, 0, 3], ['r$t_1+t_2$', '$E_0$', 'r$-t_1-t_2$']);
```
Loading