Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 46
1
Compare changes
  • Side-by-side
  • Inline
+ 46
1
@@ -25,5 +25,50 @@ Optical branch corresponds with (+) in the equation given in the lecture notes.
### Subquestion 3
Density of states is given as $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. $\frac{dN}{dk} = \frac{L}{2\pi}$ since we have 1D. $\frac{dk}{d\omega}$ can be computed using the group velocity: $$\frac{dk}{d\omega} = \bigg(\frac{d\omega}{dk} \bigg)$$
Density of states is given as $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$. $\frac{dN}{dk} = \frac{L}{2\pi}$ since we have 1D. $\frac{dk}{d\omega}$ can be computed using the group velocity: $$\frac{dk}{d\omega} = \bigg(\frac{d\omega}{dk} \bigg)^{-1} = (v_g)^{-1}$$
## Exercise 2: the Peierls transition
### Subquestion 1
A unit cell consits of exactly one $t_1$ and exactly $t_2$ hopping.
### Subquestion 2
Using the hint we find:
$$ E \phi_0 = \epsilon \phi_0 + t_1 \psi_0 + t_2 \psi_{n-1} $$
$$ E \psi_0 = \epsilon \psi_0 + t_2 \phi_{n+1} + t_2 \phi_0 $$
Notice that the hopping, in this case, is without the '-'-sign!
### Subquestion 3
Using the Ansatz and rearranging the equation yields:
$$ E \begin{pmatrix} \phi_0 \\ \psi_0 \end{pmatrix} =
\begin{pmatrix} \epsilon & t_1 + t_2 e^{-ika} \\ t_1 + t_2 e^{ika} & \epsilon \end{pmatrix}
\begin{pmatrix} \phi_0 \\ \psi_0 \end{pmatrix}
$$
### Subquestion 4
The dispersion is given by: $$ E = \epsilon \pm \sqrt{t_1^2 + t_2^2 + 2t_1t_2\cos(ka)} $$
```python
pyplot.figure()
k = np.linspace(-2*pi, 2*pi, 400)
t1 = 1;
t2 = 1.1;
pyplot.plot(k, np.sqrt(t1**2 + t2**2+2*t1*t2*np.cos(k)),'b',label='2 atom dispersion')
pyplot.plot(k, -np.sqrt(t1**2 + t2**2+2*t1*t2*np.cos(k)),'b')
pyplot.plot(k, -(t1+t2)*np.cos(k/2),'r',label='1 atom dispersion')
pyplot.plot(k[199:100:-1],-(t1+t2)*np.cos(k[0:99]/2),'r--')
pyplot.xlabel('$ka$'); pyplot.ylabel(r'$E-\epsilon$')
pyplot.xticks([-2*pi, -pi, 0, pi,2*pi], [r'$-2ka$',r'$-ka$', 0, r'$ka$',r'$2ka$'])
pyplot.yticks([-t1-t2, 0, t1+t2], [r'$-t_1-t_2$', '$E_0$', r'$t_1+t_2$']);
pyplot.vlines([-pi, pi], -3, 3, linestyles='dashed');
pyplot.legend();
```
Loading