Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
All threads resolved!
Compare and Show latest version
4 files
+ 85
5
Compare changes
  • Side-by-side
  • Inline
Files
4
@@ -55,7 +55,7 @@ pyplot.tight_layout();
### Subquestion 4
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1} \approx \frac{1}{\frac{d\omega}{dk}}$.
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1}$.
??? hint "Plots"
@@ -81,7 +81,7 @@ The Schrödinger equation is given as: $|\Psi\rangle = \sum_n \phi_n |n\rangle$
Solving the Schrödinger equation yields dispersion: $$E(k) = E_0 -t\cos(ka) -t'\cos(2ka)$$
### Subquestiion 3
### Subquestion 3
$$m_{eff} = \frac{\hbar^2}{2a^2}\frac{1}{t\cos(ka)+4t'\cos(2ka)}$$
@@ -117,8 +117,8 @@ pyplot.plot(k1, m(k1,2),'b');
pyplot.plot(k2, m(k2,2),'b');
pyplot.plot(k3, m(k3,2),'b',label='t=2t\'');
pyplot.xlabel('$k$'); pyplot.ylabel('$m_{eff}(k)$');
pyplot.xticks([-pi,0,pi],[r'$-\pi/a$',0,r'$\pi/a$']);
pyplot.yticks([-10,10],[]);
pyplot.xticks([-1.6,0,1.6],[r'$-\pi/a$',0,r'$\pi/a$']);
pyplot.yticks([0],[]);
pyplot.tight_layout();
k1 = np.linspace(-1.58, -0.81, 300);
@@ -137,7 +137,7 @@ pyplot.plot(k1, m(k1,10),'k');
pyplot.plot(k2, m(k2,10),'k');
pyplot.plot(k3, m(k3,10),'k',label='t=10t\'');
pyplot.legend()
pyplot.legend();
```
Loading