Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
4 files
+ 182
2
Compare changes
  • Side-by-side
  • Inline
Files
4
@@ -55,7 +55,7 @@ pyplot.tight_layout();
### Subquestion 4
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1} \approx \frac{1}{\frac{d\omega}{dk}}$ (This is **definitely** not an equality sign, but you can use this 'approximation' to graph the density of states).
Hint: The group velocity is given as $v = \frac{d\omega}{dk}$, draw a coordinate system **under** or **above** the dispersion graph with $k$ on the x-axis in which you draw $\frac{d\omega}{dk}$. Draw a coordinate system **next** to the dispersion with *$g(\omega)$ on the y-axis* in which you graph $\big(\frac{d\omega}{dk}\big)^{-1}$.
??? hint "Plots"
@@ -75,7 +75,7 @@ For the heat capacity we have: $$C = \frac{\partial U}{\partial T} = \int g(\ome
### Subquestion 1
The Schrödinger equation is given as: $|\Psi\rangle = \sum_n \phi_n |n\rangle$ such that we find $$ E\phi_n = E_0\phi_n - t\phi_{n-1} - t\phi_{n+1} - t'\phi_{n-2} - t'\phi_{n+2}$$.
The Schrödinger equation is given as: $|\Psi\rangle = \sum_n \phi_n |n\rangle$ such that we find $$ E\phi_n = E_0\phi_n - t\phi_{n-1} - t\phi_{n+1} - t'\phi_{n-2} - t'\phi_{n+2}$$
### Subquestion 2
@@ -83,4 +83,61 @@ Solving the Schrödinger equation yields dispersion: $$E(k) = E_0 -t\cos(ka) -t'
### Subquestion 3
$$m_{eff} = \frac{\hbar^2}{2a^2}\frac{1}{t\cos(ka)+4t'\cos(2ka)}$$
Plot for t=t':
```python
k1 = np.linspace(-pi, -pi/2-0.01, 300);
k2 = np.linspace(-pi/2+0.01, pi/2-0.01, 300);
k3 = np.linspace(pi/2+0.01, pi, 300);
pyplot.plot(k1, 1/(5*np.cos(k1)),'b');
pyplot.plot(k2, 1/(5*np.cos(k2)),'b');
pyplot.plot(k3, 1/(5*np.cos(k3)),'b');
pyplot.xlabel('$k$'); pyplot.ylabel('$m_{eff}(k)$');
pyplot.xticks([-pi,0,pi],[r'$-\pi/a$',0,r'$\pi/a$']);
pyplot.yticks([],[]);
pyplot.tight_layout();
```
### Subquestion 4
Plots for 2t'=t, 4t'=t and 10t'=t:
```python
def m(k,t):
return 1/(np.cos(k)+4*t*np.cos(2*k))
k1 = np.linspace(-1.6, -0.83, 300);
k2 = np.linspace(-0.826, 0.826, 300);
k3 = np.linspace(0.83, 1.6, 300);
pyplot.plot(k1, m(k1,2),'b');
pyplot.plot(k2, m(k2,2),'b');
pyplot.plot(k3, m(k3,2),'b',label='t=2t\'');
pyplot.xlabel('$k$'); pyplot.ylabel('$m_{eff}(k)$');
pyplot.xticks([-1.6,0,1.6],[r'$-\pi/a$',0,r'$\pi/a$']);
pyplot.yticks([0],[]);
pyplot.tight_layout();
k1 = np.linspace(-1.58, -0.81, 300);
k2 = np.linspace(-0.804, 0.804, 300);
k3 = np.linspace(0.81, 1.58, 300);
pyplot.plot(k1, m(k1,4),'r');
pyplot.plot(k2, m(k2,4),'r');
pyplot.plot(k3, m(k3,4),'r',label='t=4t\'');
k1 = np.linspace(-1.575, -0.798, 300);
k2 = np.linspace(-0.790, 0.790, 300);
k3 = np.linspace(0.798, 1.575, 300);
pyplot.plot(k1, m(k1,10),'k');
pyplot.plot(k2, m(k2,10),'k');
pyplot.plot(k3, m(k3,10),'k',label='t=10t\'');
pyplot.legend();
```
Loading