Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 2
2
Compare changes
  • Side-by-side
  • Inline
@@ -8,7 +8,7 @@ Hint: Normal modes have the same function as $\mathbf{e}_1,\mathbf{e}_2,\mathbf{
Hint: The lectures concerns atom vibrations, so what will a phonon be?
??? {Major Hint}
??? 'Spoiler'
What's the question's title?
@@ -16,4 +16,4 @@ Hint: What kind of particles obey Bose-Einstein statistics? What kind of 'partic
2.
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ with $E=\omega \hbar$. So we find: $$v = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{sin(ka){\sqrt{1-cos(ka)}}}
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$ with $E=\omega \hbar$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{sin(ka){\sqrt{1-cos(ka)}}}$$ $$ g(k) = \frac{L}{2\pi}
Loading