Skip to content
Snippets Groups Projects

Solutions lecture 7

Merged Lars kleyn Winkel requested to merge solutions-lecture-7 into master
Compare and Show latest version
1 file
+ 1
1
Compare changes
  • Side-by-side
  • Inline
@@ -16,4 +16,4 @@ Hint: What kind of particles obey Bose-Einstein statistics? What kind of 'partic
2.
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$ with $E=\omega \hbar$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{sin(ka)}{\sqrt{1-cos(ka)}}$$ $$ g(k) = \frac{L}{2\pi}$$
Group velocity is given as $v=\hbar^{-1}\frac{\partial E}{\partial k}$ and $g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega}$ with $E=\omega \hbar$. So we find: $$ v(k) = \frac{a}{2}\sqrt{\frac{2\kappa}{m}}\frac{\sin(ka)}{\sqrt{1-\cos(ka)}}$$ $$ g(k) = \frac{L}{2\pi}$$
Loading