Skip to content
Snippets Groups Projects
Select Git revision
  • a13b6d801e4740da107d6a31f08034aff79d3921
  • master default
  • ll
  • feature/flux-with-leads
  • ci/build-matrix
  • stable
  • sqrt_hop_rework
  • modes_separation
  • cons_laws_combined
  • discretizer
  • ci_dependencies
  • stable_py2
  • v1.3.0a0
  • v1.2.2
  • v1.1.2
  • v1.2.0a0
  • v1.1.1
  • v1.1.0
  • v1.1.0b0
  • v1.0.5
  • v1.0.4
  • v1.0.3
  • v1.0.2
  • v1.0.1
  • v1.1.0pre0
  • v1.0.0
  • v0.2.4
  • v0.2.0
  • v0.1.5
  • v0.1.0
  • v0.0.0
31 results

kernel_polynomial_method.py.diff

Blame
  • Forked from kwant / kwant
    Source project has a limited visibility.
    diamond_chain-checkpoint.py 13.38 KiB
    # -*- coding: utf-8 -*-
    import kwant
    import numpy as np
    
    
    def diamond_chain_system(N_c, system_params, semi_infinite = False, leads = False):
        '''
        Create a diamond chain of trimer unit cells. Each atom of the trimer has two orbital angular momentum states, + and -
              _______
        ...  | C_i_+ |
             | C_i_- |         ...
            / ------- \ ______ /
        ...           | A_i_+ | ...
                 Φ    | A_i_- |
            \ ______ //------- \
        ...  | B_i_+ |         ...
             | B_i_- |
              ------- 
        
        The Φ represents an out-of-plane magnetic field. The phase is added along the // bond in each unit cell 
        
        :param int N_c: number of unit cells to include in the cell
        :param dict system_params: parameters
        :param bool semi_infinite: whether to make a semi-infinite chain or not
        :param bool leads: whether to include leads 
        
        :rtype kwant.system.FiniteSystem:
        '''
        
        # make lattices and sublattices
        lat = kwant.lattice.Polyatomic(prim_vecs = [[1,0],[0,1]], basis = [[1,0],[1,0], [0,-1],[0,-1], [0,1],[0,1]], norbs = 1)
        a_lat_pos, a_lat_neg, b_lat_pos, b_lat_neg, c_lat_pos, c_lat_neg = lat.sublattices
        
        #make builder and populate with onsite and hoppings
        if semi_infinite == True:
            syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,0]))
        else:
            syst = kwant.Builder()
        
        
        for i in range(N_c):
            
            #staggered point
            sp = i
            
            syst[a_lat_pos(sp,0)] = system_params['mu_a_pos']
            syst[a_lat_neg(sp,0)] = system_params['mu_a_neg']
            syst[b_lat_pos(sp,0)] = system_params['mu_b_pos']
            syst[b_lat_neg(sp,0)] = system_params['mu_b_neg']
            syst[c_lat_pos(sp,0)] = system_params['mu_c_pos']
            syst[c_lat_neg(sp,0)] = system_params['mu_c_neg']
            
            if i < N_c - 1:
            
                
                syst[c_lat_pos(sp+1,0)] = system_params['mu_c_pos']
                syst[b_lat_pos(sp+1,0)] = system_params['mu_b_pos']
                syst[c_lat_neg(sp+1,0)] = system_params['mu_c_neg']
                syst[b_lat_neg(sp+1,0)] = system_params['mu_b_neg']
    
                # + <--> + 
                syst[a_lat_pos(sp,0), c_lat_pos(sp+1,0)] = system_params['j2']
                syst[a_lat_pos(sp,0), b_lat_pos(sp+1,0)] = system_params['j2']
    
                # - <--> -
                syst[a_lat_neg(sp,0), c_lat_neg(sp+1,0)] = system_params['j2']
                syst[a_lat_neg(sp,0), b_lat_neg(sp+1,0)] = system_params['j2']
    
                # + <--> - 
                syst[a_lat_pos(sp,0), b_lat_neg(sp+1,0)] = system_params['j3']
                syst[a_lat_neg(sp,0), b_lat_pos(sp+1,0)] = system_params['j3']
    
                # + <--> - hopping with phase
                syst[a_lat_pos(sp,0), c_lat_neg(sp+1,0)] = system_params['j3']*np.exp(1j*2*system_params['phi']) #phase e^i phi
                syst[a_lat_neg(sp,0), c_lat_pos(sp+1,0)] = system_params['j3']*np.exp(1j*2*system_params['phi']) #phase e^i phi
                
            # + <--> + 
            syst[a_lat_pos(sp,0), c_lat_pos(sp,0)] = system_params['j2']
            if i == 0:
                added_phase = 1
            else:
                added_phase = np.exp(1j*2*system_params['phi_d'])
            syst[a_lat_pos(sp,0), b_lat_pos(sp,0)] = system_params['j2']*added_phase #phase e^i phi_d due to mag field
            # - <--> -
            syst[a_lat_neg(sp,0), c_lat_neg(sp,0)] = system_params['j2']
            syst[a_lat_neg(sp,0), b_lat_neg(sp,0)] = system_params['j2']*added_phase #phase e^i phi_d due to mag field
            # + <--> - 
            syst[a_lat_pos(sp,0), c_lat_neg(sp,0)] = system_params['j3']
            syst[a_lat_neg(sp,0), c_lat_pos(sp,0)] = system_params['j3']
            # + <--> - hopping with phase
            syst[a_lat_pos(sp,0), b_lat_neg(sp,0)] = system_params['j3']*np.exp(1j*2*system_params['phi'])*added_phase #phase e^i phi_d due to mag field #phase e^i phi
            syst[a_lat_neg(sp,0), b_lat_pos(sp,0)] = system_params['j3']*np.exp(1j*2*system_params['phi'])*added_phase #phase e^i phi_d due to mag field #phase e^i phi
            
        if leads:
            
            lead_syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,0]))
            
            
            lead_syst[a_lat_pos(0,0)] = 0
            lead_syst[a_lat_neg(0,0)] = 0
            lead_syst[b_lat_pos(0,0)] = 0
            lead_syst[b_lat_neg(0,0)] = 0
            lead_syst[c_lat_pos(0,0)] = 0
            lead_syst[c_lat_neg(0,0)] = 0
            
            lead_syst[lat.neighbors(n=1)] = 1
            
            syst.attach_lead(lead_syst)
            syst.attach_lead(lead_syst.reversed())
        
        return syst
    
    def tilted_diamond_chain_system(N_c, system_params, semi_infinite = False, leads = False, closed_chain = False):
        '''
        Create a diamond chain of trimer unit cells. Each atom of the trimer has two orbital angular momentum states, + and -
              
                          _______
                  ...  __| B_i_+ |
                         | B_i_- |
                          ------- 
                  |     Φ    ||
               _______    _______
              | C_i_+ |__| A_i_+ |__ ...
              | C_i_- |  | A_i_- |
               -------    -------
                              |
                             ...
                             
        The Φ represents an out-of-plane magnetic field. The phase is added along the == bond in each unit cell 
        
        :param int N_c: number of unit cells to include in the cell
        :param dict system_params: parameters
        :param bool semi_infinite: whether to make a semi-infinite chain or not
        :param bool leads: whether to include leads 
        :param bool closed_chain: whether to close the chain by adding one additional A site on the open trimer at one end of the chain.
        
        :rtype kwant.system.FiniteSystem:
        '''
        
        # make lattices and sublattices
        lat = kwant.lattice.Polyatomic(prim_vecs = [[1,-1],[1,1]], basis = [[0,0],[0,0], [0,1],[0,1], [-1,0],[-1,0]], norbs = 1)
        a_lat_pos, a_lat_neg, b_lat_pos, b_lat_neg, c_lat_pos, c_lat_neg = lat.sublattices
        
        #make builder and populate with onsite and hoppings
        if semi_infinite == True:
            syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,-1]))
        else:
            syst = kwant.Builder()
        
            
        
        for i in range(N_c):
            
            #staggered point
            sp = i
            
            syst[a_lat_pos(sp,0)] = system_params['mu_a_pos']
            syst[a_lat_neg(sp,0)] = system_params['mu_a_neg']
            syst[b_lat_pos(sp,0)] = system_params['mu_b_pos']
            syst[b_lat_neg(sp,0)] = system_params['mu_b_neg']
            syst[c_lat_pos(sp,0)] = system_params['mu_c_pos']
            syst[c_lat_neg(sp,0)] = system_params['mu_c_neg']
            
            if i == 0:
                
                added_phase = 1
                
                if closed_chain:
                    syst[a_lat_pos(-1,0)] = system_params['mu_a_pos']
                    syst[a_lat_neg(-1,0)] = system_params['mu_a_neg']
                    
                    syst[a_lat_pos(-1,0), c_lat_pos(0,0)] = system_params['j2']
                    syst[a_lat_pos(-1,0), b_lat_pos(0,0)] = system_params['j2']
                    
                    syst[a_lat_neg(-1,0), c_lat_neg(0,0)] = system_params['j2']
                    syst[a_lat_neg(-1,0), b_lat_neg(0,0)] = system_params['j2']
                    
                    syst[a_lat_pos(-1,0), b_lat_neg(0,0)] = system_params['j3']*added_phase #phase e^i phi_d due to mag field
                    syst[a_lat_neg(-1,0), b_lat_pos(0,0)] = system_params['j3']*added_phase #phase e^i phi_d due to mag field
                    
                    syst[a_lat_pos(-1,0), c_lat_neg(0,0)] = system_params['j3']*np.exp(1j*2*system_params['phi']) #phase e^i phi
                    syst[a_lat_neg(-1,0), c_lat_pos(0,0)] = system_params['j3']*np.exp(1j*2*system_params['phi']) #phase e^i phi
                    
                
            else:
                added_phase = np.exp(1j*2*system_params['phi_d'])
                
            
            if i < N_c - 1:
            
                
                syst[c_lat_pos(sp+1,0)] = system_params['mu_c_pos']
                syst[b_lat_pos(sp+1,0)] = system_params['mu_b_pos']
                syst[c_lat_neg(sp+1,0)] = system_params['mu_c_neg']
                syst[b_lat_neg(sp+1,0)] = system_params['mu_b_neg']
    
                # + <--> + 
                syst[a_lat_pos(sp,0), c_lat_pos(sp+1,0)] = system_params['j2']
                syst[a_lat_pos(sp,0), b_lat_pos(sp+1,0)] = system_params['j2']
    
                # - <--> -
                syst[a_lat_neg(sp,0), c_lat_neg(sp+1,0)] = system_params['j2']
                syst[a_lat_neg(sp,0), b_lat_neg(sp+1,0)] = system_params['j2']
    
                # + <--> - 
                syst[a_lat_pos(sp,0), b_lat_neg(sp+1,0)] = system_params['j3']*added_phase #phase e^i phi_d due to mag field
                syst[a_lat_neg(sp,0), b_lat_pos(sp+1,0)] = system_params['j3']*added_phase #phase e^i phi_d due to mag field
    
                # + <--> - hopping with phase
                syst[a_lat_pos(sp,0), c_lat_neg(sp+1,0)] = system_params['j3']*np.exp(1j*2*system_params['phi']) #phase e^i phi
                syst[a_lat_neg(sp,0), c_lat_pos(sp+1,0)] = system_params['j3']*np.exp(1j*2*system_params['phi']) #phase e^i phi
                
            # + <--> + 
            syst[a_lat_pos(sp,0), c_lat_pos(sp,0)] = system_params['j2']
            syst[a_lat_pos(sp,0), b_lat_pos(sp,0)] = system_params['j2']*added_phase #phase e^i phi_d due to mag field
            # - <--> -
            syst[a_lat_neg(sp,0), c_lat_neg(sp,0)] = system_params['j2']
            syst[a_lat_neg(sp,0), b_lat_neg(sp,0)] = system_params['j2']*added_phase #phase e^i phi_d due to mag field
            # + <--> - 
            syst[a_lat_pos(sp,0), c_lat_neg(sp,0)] = system_params['j3']
            syst[a_lat_neg(sp,0), c_lat_pos(sp,0)] = system_params['j3']
            # + <--> - hopping with phase
            syst[a_lat_pos(sp,0), b_lat_neg(sp,0)] = system_params['j3']*np.exp(1j*2*system_params['phi'])*added_phase #phase e^i phi_d due to mag field #phase e^i phi
            syst[a_lat_neg(sp,0), b_lat_pos(sp,0)] = system_params['j3']*np.exp(1j*2*system_params['phi'])*added_phase #phase e^i phi_d due to mag field #phase e^i phi
            
                
            
        if leads:
            
            lead_syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,0]))
            
            
            lead_syst[a_lat_pos(0,0)] = 0
            lead_syst[a_lat_neg(0,0)] = 0
            lead_syst[b_lat_pos(0,0)] = 0
            lead_syst[b_lat_neg(0,0)] = 0
            lead_syst[c_lat_pos(0,0)] = 0
            lead_syst[c_lat_neg(0,0)] = 0
            
            lead_syst[lat.neighbors(n=1)] = 1
            
            syst.attach_lead(lead_syst)
            syst.attach_lead(lead_syst.reversed())
        
        return syst
    
    
    
    
    def s_tilted_diamond_chain_system(N_c, system_params, semi_infinite = False, leads = False, closed_chain = False):
        '''
        Create a diamond chain of trimer unit cells. 
              
                          _______
                  ...  __| B_i   |
                         |       |
                          ------- 
                  |     Φ    ||
               _______    _______
              | C_i   |__| A_i   |__ ...
              |       |  |       |
               -------    -------
                              |
                             ...
                             
        The Φ represents an out-of-plane magnetic field. The phase is added along the == bond in each unit cell 
        
        :param int N_c: number of unit cells to include in the cell
        :param dict system_params: parameters
        :param bool semi_infinite: whether to make a semi-infinite chain or not
        :param bool leads: whether to include leads 
        :param bool closed_chain: whether to close the chain by adding one additional A site on the open trimer at one end of the chain.
        
        :rtype kwant.system.FiniteSystem:
        '''
        
        # make lattices and sublattices
        lat = kwant.lattice.Polyatomic(prim_vecs = [[1,-1],[1,1]], basis = [[0,0], [0,1], [-1,0]], norbs = 1)
        a_lat, b_lat, c_lat = lat.sublattices
        
        #make builder and populate with onsite and hoppings
        if semi_infinite == True:
            syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,-1]))
        else:
            syst = kwant.Builder()
        
            
        
        for i in range(N_c):
            
            #staggered point
            sp = i
            
            syst[a_lat(sp,0)] = system_params['mu_a']
            syst[b_lat(sp,0)] = system_params['mu_b']
            syst[c_lat(sp,0)] = system_params['mu_c']
            
            if i == 0:
                
                added_phase = 1
                
                if closed_chain:
                    syst[a_lat(-1,0)] = system_params['mu_a']
                    
                    syst[a_lat(-1,0), c_lat(0,0)] = system_params['j2']
                    syst[a_lat(-1,0), b_lat(0,0)] = system_params['j2']
                    
                
            else:
                added_phase = np.exp(1j*2*system_params['phi_d'])
                
            
            if i < N_c - 1:
            
                #intercell
                syst[c_lat(sp+1,0)] = system_params['mu_c']
                syst[b_lat(sp+1,0)] = system_params['mu_b']
    
                syst[a_lat(sp,0), c_lat(sp+1,0)] = system_params['j2']
                syst[a_lat(sp,0), b_lat(sp+1,0)] = system_params['j2']
    
                
            # intracell
            syst[a_lat(sp,0), c_lat(sp,0)] = system_params['j2']
            syst[a_lat(sp,0), b_lat(sp,0)] = system_params['j2']*added_phase #phase e^i phi_d due to mag field
            
            
                
            
        if leads:
            
            lead_syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,0]))
            
            
            lead_syst[a_lat(0,0)] = 0
            lead_syst[b_lat(0,0)] = 0
            lead_syst[c_lat(0,0)] = 0
            
            lead_syst[lat.neighbors(n=1)] = 1
            
            syst.attach_lead(lead_syst)
            syst.attach_lead(lead_syst.reversed())
        
        return syst