Newer
Older
import kwant
import numpy as np
def diamond_chain_system(N_c, system_params, semi_infinite = False, leads = False):
'''
Create a diamond chain of trimer unit cells. Each atom of the trimer has two orbital angular momentum states, + and -
_______
... | C_i_+ |
| C_i_- | ...
/ ------- \ ______ /
... | A_i_+ | ...
| A_i_- |
\ ______ / ------- \
... | B_i_+ | ...
| B_i_- |
-------
:param int N_c: number of unit cells to include in the cell
:param dict system_params: parameters
:param bool semi_infinite: whether to make a semi-infinite chain or not
:param bool leads: whether to include leads
:rtype kwant.system.FiniteSystem:
'''
# make lattices and sublattices
lat = kwant.lattice.Polyatomic(prim_vecs = [[1,0],[0,1]], basis = [[1,0],[1,0], [0,-1],[0,-1], [0,1],[0,1]], norbs = 1)
a_lat_pos, a_lat_neg, b_lat_pos, b_lat_neg, c_lat_pos, c_lat_neg = lat.sublattices
#make builder and populate with onsite and hoppings
if semi_infinite == True:
syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,0]))
else:
syst = kwant.Builder()
for i in range(N_c):
#staggered point
syst[a_lat_pos(sp,0)] = system_params['mu_a']
syst[a_lat_neg(sp,0)] = system_params['mu_a']
syst[b_lat_pos(sp,0)] = system_params['mu_b']
syst[b_lat_neg(sp,0)] = system_params['mu_b']
syst[c_lat_pos(sp,0)] = system_params['mu_c']
syst[c_lat_neg(sp,0)] = system_params['mu_c']
if i < N_c - 1:
syst[c_lat_pos(sp+1,0)] = system_params['mu_c']
syst[b_lat_pos(sp+1,0)] = system_params['mu_b']
syst[c_lat_neg(sp+1,0)] = system_params['mu_c']
syst[b_lat_neg(sp+1,0)] = system_params['mu_b']
syst[a_lat_pos(sp,0), c_lat_pos(sp+1,0)] = system_params['j2']
syst[a_lat_pos(sp,0), b_lat_pos(sp+1,0)] = system_params['j2']
syst[a_lat_neg(sp,0), c_lat_neg(sp+1,0)] = system_params['j2']
syst[a_lat_neg(sp,0), b_lat_neg(sp+1,0)] = system_params['j2']
syst[a_lat_pos(sp,0), b_lat_neg(sp+1,0)] = system_params['j3']
syst[a_lat_neg(sp,0), b_lat_pos(sp+1,0)] = system_params['j3']
# + <--> - hopping with phase
syst[a_lat_pos(sp,0), c_lat_neg(sp+1,0)] = -system_params['j3'] #phase e^i pi
syst[a_lat_neg(sp,0), c_lat_pos(sp+1,0)] = -system_params['j3'] #phase e^i pi
syst[a_lat_pos(sp,0), c_lat_pos(sp,0)] = system_params['j2']
syst[a_lat_pos(sp,0), b_lat_pos(sp,0)] = system_params['j2']
syst[a_lat_neg(sp,0), c_lat_neg(sp,0)] = system_params['j2']
syst[a_lat_neg(sp,0), b_lat_neg(sp,0)] = system_params['j2']
syst[a_lat_pos(sp,0), c_lat_neg(sp,0)] = system_params['j3']
syst[a_lat_neg(sp,0), c_lat_pos(sp,0)] = system_params['j3']
# + <--> - hopping with phase
syst[a_lat_pos(sp,0), b_lat_neg(sp,0)] = -system_params['j3'] #phase e^i pi
syst[a_lat_neg(sp,0), b_lat_pos(sp,0)] = -system_params['j3'] #phase e^i pi
if leads:
lead_syst = kwant.Builder(symmetry=kwant.lattice.TranslationalSymmetry([1,0]))
lead_syst[a_lat_pos(0,0)] = 0
lead_syst[a_lat_neg(0,0)] = 0
lead_syst[b_lat_pos(0,0)] = 0
lead_syst[b_lat_neg(0,0)] = 0
lead_syst[c_lat_pos(0,0)] = 0
lead_syst[c_lat_neg(0,0)] = 0
lead_syst[lat.neighbors(n=1)] = 1
syst.attach_lead(lead_syst)
syst.attach_lead(lead_syst.reversed())
return syst