Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • kwant/kwant
  • jbweston/kwant
  • anton-akhmerov/kwant
  • cwg/kwant
  • Mathieu/kwant
  • slavoutich/kwant
  • pacome/kwant
  • behrmann/kwant
  • michaelwimmer/kwant
  • albeercik/kwant
  • eunjongkim/kwant
  • basnijholt/kwant
  • r-j-skolasinski/kwant
  • sahmed95/kwant
  • pablopiskunow/kwant
  • mare/kwant
  • dvarjas/kwant
  • Paul/kwant
  • bbuijtendorp/kwant
  • tkloss/kwant
  • torosdahl/kwant
  • kel85uk/kwant
  • kpoyhonen/kwant
  • Fromeworld/kwant
  • quaeritis/kwant
  • marwahaha/kwant
  • fernandodfufrpe/kwant
  • oly/kwant
  • jiamingh/kwant
  • mehdi2369/kwant
  • ValFadeev/kwant
  • Kostas/kwant
  • chelseabaptiste03/kwant
33 results
Show changes
Showing
with 2947 additions and 1953 deletions
# Tutorial 2.9. Processing continuum Hamiltonians with discretize
# ===============================================================
#
# Physics background
# ------------------
# - tight-binding approximation of continuous Hamiltonians
#
# Kwant features highlighted
# --------------------------
# - kwant.continuum.discretize
import kwant
import scipy.sparse.linalg
import scipy.linalg
import numpy as np
# For plotting
import matplotlib as mpl
from matplotlib import pyplot as plt
def stadium_system(L=20, W=20):
#HIDDEN_BEGIN_template
hamiltonian = "k_x**2 + k_y**2 + V(x, y)"
template = kwant.continuum.discretize(hamiltonian)
print(template)
#HIDDEN_END_template
#HIDDEN_BEGIN_fill
def stadium(site):
(x, y) = site.pos
x = max(abs(x) - 20, 0)
return x**2 + y**2 < 30**2
syst = kwant.Builder()
syst.fill(template, stadium, (0, 0));
syst = syst.finalized()
#HIDDEN_END_fill
return syst
#HIDDEN_BEGIN_plot_eigenstate
def plot_eigenstate(syst, n=2, Vx=.0003, Vy=.0005):
def potential(x, y):
return Vx * x + Vy * y
ham = syst.hamiltonian_submatrix(params=dict(V=potential), sparse=True)
evecs = scipy.sparse.linalg.eigsh(ham, k=10, which='SM')[1]
kwant.plotter.map(syst, abs(evecs[:, n])**2, show=False)
#HIDDEN_END_plot_eigenstate
plt.show()
def qsh_system(a=20, L=2000, W=1000):
#HIDDEN_BEGIN_define_qsh
hamiltonian = """
+ C * identity(4) + M * kron(sigma_0, sigma_z)
- B * (k_x**2 + k_y**2) * kron(sigma_0, sigma_z)
- D * (k_x**2 + k_y**2) * kron(sigma_0, sigma_0)
+ A * k_x * kron(sigma_z, sigma_x)
- A * k_y * kron(sigma_0, sigma_y)
"""
template = kwant.continuum.discretize(hamiltonian, grid_spacing=a)
#HIDDEN_END_define_qsh
#HIDDEN_BEGIN_define_qsh_build
def shape(site):
(x, y) = site.pos
return (0 <= y < W and 0 <= x < L)
def lead_shape(site):
(x, y) = site.pos
return (0 <= y < W)
syst = kwant.Builder()
syst.fill(template, shape, (0, 0))
lead = kwant.Builder(kwant.TranslationalSymmetry([-a, 0]))
lead.fill(template, lead_shape, (0, 0))
syst.attach_lead(lead)
syst.attach_lead(lead.reversed())
syst = syst.finalized()
#HIDDEN_END_define_qsh_build
return syst
def analyze_qsh():
params = dict(A=3.65, B=-68.6, D=-51.1, M=-0.01, C=0)
syst = qsh_system()
#HIDDEN_BEGIN_plot_qsh_band
kwant.plotter.bands(syst.leads[0], params=params,
momenta=np.linspace(-0.3, 0.3, 201), show=False)
#HIDDEN_END_plot_qsh_band
plt.grid()
plt.xlim(-.3, 0.3)
plt.ylim(-0.05, 0.05)
plt.xlabel('momentum [1/A]')
plt.ylabel('energy [eV]')
plt.show()
#HIDDEN_BEGIN_plot_qsh_wf
# get scattering wave functions at E=0
wf = kwant.wave_function(syst, energy=0, params=params)
# prepare density operators
sigma_z = np.array([[1, 0], [0, -1]])
prob_density = kwant.operator.Density(syst, np.eye(4))
spin_density = kwant.operator.Density(syst, np.kron(sigma_z, np.eye(2)))
# calculate expectation values and plot them
wf_sqr = sum(prob_density(psi) for psi in wf(0)) # states from left lead
rho_sz = sum(spin_density(psi) for psi in wf(0)) # states from left lead
fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(16, 4))
kwant.plotter.map(syst, wf_sqr, ax=ax1)
kwant.plotter.map(syst, rho_sz, ax=ax2)
#HIDDEN_END_plot_qsh_wf
ax = ax1
im = [obj for obj in ax.get_children()
if isinstance(obj, mpl.image.AxesImage)][0]
fig.colorbar(im, ax=ax)
ax = ax2
im = [obj for obj in ax.get_children()
if isinstance(obj, mpl.image.AxesImage)][0]
fig.colorbar(im, ax=ax)
ax1.set_title('Probability density')
ax2.set_title('Spin density')
plt.show()
def lattice_spacing():
#HIDDEN_BEGIN_ls_def
hamiltonian = "k_x**2 * identity(2) + alpha * k_x * sigma_y"
params = dict(alpha=.5)
#HIDDEN_END_ls_def
def plot(ax, a=1):
#HIDDEN_BEGIN_ls_hk_cont
h_k = kwant.continuum.lambdify(hamiltonian, locals=params)
k_cont = np.linspace(-4, 4, 201)
e_cont = [scipy.linalg.eigvalsh(h_k(k_x=ki)) for ki in k_cont]
#HIDDEN_END_ls_hk_cont
#HIDDEN_BEGIN_ls_hk_tb
template = kwant.continuum.discretize(hamiltonian, grid_spacing=a)
syst = kwant.wraparound.wraparound(template).finalized()
def h_k(k_x):
p = dict(k_x=k_x, **params)
return syst.hamiltonian_submatrix(params=p)
k_tb = np.linspace(-np.pi/a, np.pi/a, 201)
e_tb = [scipy.linalg.eigvalsh(h_k(k_x=a*ki)) for ki in k_tb]
#HIDDEN_END_ls_hk_tb
ax.plot(k_cont, e_cont, 'r-')
ax.plot(k_tb, e_tb, 'k-')
ax.plot([], [], 'r-', label='continuum')
ax.plot([], [], 'k-', label='tight-binding')
ax.set_xlim(-4, 4)
ax.set_ylim(-1, 14)
ax.set_title('a={}'.format(a))
ax.set_xlabel('momentum [a.u.]')
ax.set_ylabel('energy [a.u.]')
ax.grid()
ax.legend()
_, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(12, 4))
plot(ax1, a=1)
plot(ax2, a=.25)
plt.show()
def substitutions():
#HIDDEN_BEGIN_subs_1
sympify = kwant.continuum.sympify
subs = {'sx': [[0, 1], [1, 0]], 'sz': [[1, 0], [0, -1]]}
e = (
sympify('[[k_x**2, alpha * k_x], [k_x * alpha, -k_x**2]]'),
sympify('k_x**2 * sigma_z + alpha * k_x * sigma_x'),
sympify('k_x**2 * sz + alpha * k_x * sx', locals=subs),
)
print(e[0] == e[1] == e[2])
#HIDDEN_END_subs_1
#HIDDEN_BEGIN_subs_2
subs = {'A': 'A(x) + B', 'V': 'V(x) + V_0', 'C': 5}
print(sympify('k_x * A * k_x + V + C', locals=subs))
#HIDDEN_END_subs_2
def main():
#HIDDEN_BEGIN_symbolic_discretization
template = kwant.continuum.discretize('k_x * A(x) * k_x')
print(template)
#HIDDEN_END_symbolic_discretization
syst = stadium_system()
plot_eigenstate(syst)
analyze_qsh()
lattice_spacing()
substitutions()
# Call the main function if the script gets executed (as opposed to imported).
# See <http://docs.python.org/library/__main__.html>.
if __name__ == '__main__':
main()
......@@ -16,10 +16,40 @@ The `~kwant.continuum` sub-package aims to be a solution to this problem.
It is a collection of tools for working with
continuum models and for discretizing them into tight-binding models.
.. seealso::
You can execute the code examples live in your browser by
activating thebelab:
.. thebe-button:: Activate Thebelab
.. seealso::
The complete source code of this tutorial can be found in
:download:`tutorial/discretize.py <../../../tutorial/discretize.py>`
:jupyter-download-script:`discretize`
.. jupyter-kernel::
:id: discretize
.. jupyter-execute::
:hide-code:
# Tutorial 2.9. Processing continuum Hamiltonians with discretize
# ===============================================================
#
# Physics background
# ------------------
# - tight-binding approximation of continuous Hamiltonians
#
# Kwant features highlighted
# --------------------------
# - kwant.continuum.discretize
import matplotlib as mpl
from matplotlib import pyplot
import kwant
.. jupyter-execute:: boilerplate.py
:hide-code:
.. _tutorial_discretizer_introduction:
......@@ -53,6 +83,18 @@ with :math:`A(x) = \frac{\hbar^2}{2 m(x)}`.
Using `~kwant.continuum.discretize` to obtain a template
........................................................
First we must explicitly import the `kwant.continuum` package:
.. jupyter-execute::
import kwant.continuum
.. jupyter-execute::
:hide-code:
import scipy.sparse.linalg
import scipy.linalg
import numpy as np
The function `kwant.continuum.discretize` takes a symbolic Hamiltonian and
turns it into a `~kwant.builder.Builder` instance with appropriate spatial
......@@ -60,19 +102,19 @@ symmetry that serves as a template.
(We will see how to use the template to build systems with a particular
shape later).
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_symbolic_discretization
:end-before: #HIDDEN_END_symbolic_discretization
.. jupyter-execute::
template = kwant.continuum.discretize('k_x * A(x) * k_x')
print(template)
It is worth noting that ``discretize`` treats ``k_x`` and ``x`` as
non-commuting operators, and so their order is preserved during the
discretization process.
The builder produced by ``discretize`` may be printed to show the source code of its onsite and hopping functions (this is a special feature of builders returned by ``discretize``):
Printing the Builder produced by ``discretize`` shows the source code of its onsite and hopping functions (this is a special feature of builders returned by ``discretize``).
.. literalinclude:: ../images/discretizer_intro_verbose.txt
.. specialnote:: Technical details
.. admonition:: Technical details
:class: dropdown note
- ``kwant.continuum`` uses ``sympy`` internally to handle symbolic
expressions. Strings are converted using `kwant.continuum.sympify`,
......@@ -109,7 +151,7 @@ The builder produced by ``discretize`` may be printed to show the source code of
When working interactively in `Jupyter notebooks <https://jupyter.org/>`_
it can be useful to use this to see a symbolic representation of
the discretized Hamiltonian. This works best when combined with ``sympy``
`Pretty Printing <http://docs.sympy.org/latest/tutorial/printing.html#setting-up-pretty-printing>`_.
`Pretty Printing <https://docs.sympy.org/latest/tutorials/intro-tutorial/printing.html#setting-up-pretty-printing>`_.
- The symbolic result of discretization obtained with
``discretize_symbolic`` can be converted into a
......@@ -134,35 +176,56 @@ where :math:`V(x, y)` is some arbitrary potential.
First, use ``discretize`` to obtain a
builder that we will use as a template:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_template
:end-before: #HIDDEN_END_template
.. jupyter-execute::
hamiltonian = "k_x**2 + k_y**2 + V(x, y)"
template = kwant.continuum.discretize(hamiltonian)
print(template)
We now use this system with the `~kwant.builder.Builder.fill`
method of `~kwant.builder.Builder` to construct the system we
want to investigate:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_fill
:end-before: #HIDDEN_END_fill
.. jupyter-execute::
def stadium(site):
(x, y) = site.pos
x = max(abs(x) - 20, 0)
return x**2 + y**2 < 30**2
syst = kwant.Builder()
syst.fill(template, stadium, (0, 0));
syst = syst.finalized()
After finalizing this system, we can plot one of the system's
energy eigenstates:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_plot_eigenstate
:end-before: #HIDDEN_END_plot_eigenstate
.. jupyter-execute::
def plot_eigenstate(syst, n=2, Vx=.0003, Vy=.0005):
def potential(x, y):
return Vx * x + Vy * y
ham = syst.hamiltonian_submatrix(params=dict(V=potential), sparse=True)
evecs = scipy.sparse.linalg.eigsh(ham, k=10, which='SM')[1]
kwant.plotter.map(syst, abs(evecs[:, n])**2, show=False)
.. image:: ../images/discretizer_gs.*
.. jupyter-execute::
:hide-code:
Note in the above that we provided the function ``V`` to
``syst.hamiltonian_submatrix`` using ``params=dict(V=potential)``, rather than
via ``args``.
plot_eigenstate(syst)
Note in the above that we pass the spatially varying potential *function*
to our system via a parameter called ``V``, because the symbol :math:`V`
was used in the initial, symbolic, definition of the Hamiltonian.
In addition, the function passed as ``V`` expects two input parameters ``x``
and ``y``, the same as in the initial continuum Hamiltonian.
.. _discretize-bhz-model:
Models with more structure: Bernevig-Hughes-Zhang
.................................................
......@@ -171,32 +234,95 @@ model [1]_ [2]_, one can provide matrix input to `~kwant.continuum.discretize`
using ``identity`` and ``kron``. For example, the definition of the BHZ model can be
written succinctly as:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_define_qsh
:end-before: #HIDDEN_END_define_qsh
.. jupyter-execute::
hamiltonian = """
+ C * identity(4) + M * kron(sigma_0, sigma_z)
- B * (k_x**2 + k_y**2) * kron(sigma_0, sigma_z)
- D * (k_x**2 + k_y**2) * kron(sigma_0, sigma_0)
+ A * k_x * kron(sigma_z, sigma_x)
- A * k_y * kron(sigma_0, sigma_y)
"""
a = 20
template = kwant.continuum.discretize(hamiltonian, grid=a)
We can then make a ribbon out of this template system:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_define_qsh_build
:end-before: #HIDDEN_END_define_qsh_build
.. jupyter-execute::
L, W = 2000, 1000
def shape(site):
(x, y) = site.pos
return (0 <= y < W and 0 <= x < L)
def lead_shape(site):
(x, y) = site.pos
return (0 <= y < W)
syst = kwant.Builder()
syst.fill(template, shape, (0, 0))
lead = kwant.Builder(kwant.TranslationalSymmetry([-a, 0]))
lead.fill(template, lead_shape, (0, 0))
syst.attach_lead(lead)
syst.attach_lead(lead.reversed())
syst = syst.finalized()
and plot its dispersion using `kwant.plotter.bands`:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_plot_qsh_band
:end-before: #HIDDEN_END_plot_qsh_band
.. jupyter-execute::
params = dict(A=3.65, B=-68.6, D=-51.1, M=-0.01, C=0)
.. image:: ../images/discretizer_qsh_band.*
kwant.plotter.bands(syst.leads[0], params=params,
momenta=np.linspace(-0.3, 0.3, 201), show=False)
pyplot.grid()
pyplot.xlim(-.3, 0.3)
pyplot.ylim(-0.05, 0.05)
pyplot.xlabel('momentum [1/A]')
pyplot.ylabel('energy [eV]')
pyplot.show()
In the above we see the edge states of the quantum spin Hall effect, which
we can visualize using `kwant.plotter.map`:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_plot_qsh_wf
:end-before: #HIDDEN_END_plot_qsh_wf
.. jupyter-execute::
# get scattering wave functions at E=0
wf = kwant.wave_function(syst, energy=0, params=params)
# prepare density operators
sigma_z = np.array([[1, 0], [0, -1]])
prob_density = kwant.operator.Density(syst, np.eye(4))
spin_density = kwant.operator.Density(syst, np.kron(sigma_z, np.eye(2)))
# calculate expectation values and plot them
wf_sqr = sum(prob_density(psi) for psi in wf(0)) # states from left lead
rho_sz = sum(spin_density(psi) for psi in wf(0)) # states from left lead
fig, (ax1, ax2) = pyplot.subplots(1, 2, sharey=True, figsize=(16, 4))
kwant.plotter.map(syst, wf_sqr, ax=ax1)
kwant.plotter.map(syst, rho_sz, ax=ax2)
ax = ax1
im = [obj for obj in ax.get_children()
if isinstance(obj, mpl.image.AxesImage)][0]
fig.colorbar(im, ax=ax)
.. image:: ../images/discretizer_qsh_wf.*
ax = ax2
im = [obj for obj in ax.get_children()
if isinstance(obj, mpl.image.AxesImage)][0]
fig.colorbar(im, ax=ax)
ax1.set_title('Probability density')
ax2.set_title('Spin density')
pyplot.show()
Limitations of discretization
......@@ -219,10 +345,10 @@ and its discretized approximation
where :math:`t=\frac{\hbar^2}{2ma^2}`, are only valid in the limit
:math:`E \lt t`. The grid spacing :math:`a` must be chosen according
:math:`E < t`. The grid spacing :math:`a` must be chosen according
to how high in energy you need your tight-binding model to be valid.
It is possible to set :math:`a` through the ``grid_spacing`` parameter
It is possible to set :math:`a` through the ``grid`` parameter
to `~kwant.continuum.discretize`, as we will illustrate in the following
example. Let us start from the continuum Hamiltonian
......@@ -233,29 +359,62 @@ example. Let us start from the continuum Hamiltonian
We start by defining this model as a string and setting the value of the
:math:`α` parameter:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_ls_def
:end-before: #HIDDEN_END_ls_def
.. jupyter-execute::
hamiltonian = "k_x**2 * identity(2) + alpha * k_x * sigma_y"
params = dict(alpha=.5)
Now we can use `kwant.continuum.lambdify` to obtain a function that computes
:math:`H(k)`:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_ls_hk_cont
:end-before: #HIDDEN_END_ls_hk_cont
.. jupyter-execute::
h_k = kwant.continuum.lambdify(hamiltonian, locals=params)
k_cont = np.linspace(-4, 4, 201)
e_cont = [scipy.linalg.eigvalsh(h_k(k_x=ki)) for ki in k_cont]
We can also construct a discretized approximation using
`kwant.continuum.discretize`, in a similar manner to previous examples:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_ls_hk_tb
:end-before: #HIDDEN_END_ls_hk_tb
.. jupyter-execute::
def plot(ax, a=1):
template = kwant.continuum.discretize(hamiltonian, grid=a)
syst = kwant.wraparound.wraparound(template).finalized()
def h_k(k_x):
p = dict(k_x=k_x, **params)
return syst.hamiltonian_submatrix(params=p)
k_tb = np.linspace(-np.pi/a, np.pi/a, 201)
e_tb = [scipy.linalg.eigvalsh(h_k(k_x=a*ki)) for ki in k_tb]
ax.plot(k_cont, e_cont, 'r-')
ax.plot(k_tb, e_tb, 'k-')
ax.plot([], [], 'r-', label='continuum')
ax.plot([], [], 'k-', label='tight-binding')
ax.set_xlim(-4, 4)
ax.set_ylim(-1, 14)
ax.set_title('a={}'.format(a))
ax.set_xlabel('momentum [a.u.]')
ax.set_ylabel('energy [a.u.]')
ax.grid()
ax.legend()
Below we can see the continuum and tight-binding dispersions for two
different values of the discretization grid spacing :math:`a`:
.. image:: ../images/discretizer_lattice_spacing.*
.. jupyter-execute::
:hide-code:
_, (ax1, ax2) = pyplot.subplots(1, 2, sharey=True, figsize=(12, 4))
plot(ax1, a=1)
plot(ax2, a=.25)
pyplot.show()
We clearly see that the smaller grid spacing is, the better we approximate
the original continuous dispersion. It is also worth remembering that the
......@@ -279,32 +438,39 @@ It is possible to use ``identity`` (for identity matrix), ``kron`` (for Kronecke
expressions involving matrices. Matrices can also be provided explicitly using
square ``[]`` brackets. For example, all following expressions are equivalent:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_subs_1
:end-before: #HIDDEN_END_subs_1
.. jupyter-execute::
sympify = kwant.continuum.sympify
subs = {'sx': [[0, 1], [1, 0]], 'sz': [[1, 0], [0, -1]]}
e = (
sympify('[[k_x**2, alpha * k_x], [k_x * alpha, -k_x**2]]'),
sympify('k_x**2 * sigma_z + alpha * k_x * sigma_x'),
sympify('k_x**2 * sz + alpha * k_x * sx', locals=subs),
)
.. literalinclude:: ../images/discretizer_subs_1.txt
print(e[0] == e[1] == e[2])
We can use the ``locals`` keyword parameter to substitute expressions
and numerical values:
.. literalinclude:: discretize.py
:start-after: #HIDDEN_BEGIN_subs_2
:end-before: #HIDDEN_END_subs_2
.. jupyter-execute::
.. literalinclude:: ../images/discretizer_subs_2.txt
subs = {'A': 'A(x) + B', 'V': 'V(x) + V_0', 'C': 5}
print(sympify('k_x * A * k_x + V + C', locals=subs))
Symbolic expressions obtained in this way can be directly passed to all
``discretizer`` functions.
.. specialnote:: Technical details
.. admonition:: Technical details
:class: dropdown note
Because of the way that ``sympy`` handles commutation relations all symbols
representing position and momentum operators are set to be non commutative.
This means that the order of momentum and position operators in the input
expression is preserved. Note that it is not possible to define individual
commutation relations within ``sympy``, even expressions such :math:`x k_y x`
will not be simplified, even though mathematically :math:`[x, k_y] = 0`.
Because of the way that ``sympy`` handles commutation relations all symbols
representing position and momentum operators are set to be non commutative.
This means that the order of momentum and position operators in the input
expression is preserved. Note that it is not possible to define individual
commutation relations within ``sympy``, even expressions such :math:`x k_y x`
will not be simplified, even though mathematically :math:`[x, k_y] = 0`.
.. rubric:: References
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -12,3 +12,5 @@ Tutorial: learning Kwant through examples
plotting
kpm
discretize
magnetic_field
faq
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.