Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
L
lectures
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Mathematics for Quantum Physics
lectures
Commits
52004403
Commit
52004403
authored
4 years ago
by
Scarlett Gauthier
Browse files
Options
Downloads
Patches
Plain Diff
Finish final case of page 9.
parent
297d1059
No related branches found
Branches containing commit
No related tags found
1 merge request
!8
Differential Equations Lecture 1
Pipeline
#41439
passed
4 years ago
Stage: build
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/differential_equations_1.md
+30
-1
30 additions, 1 deletion
src/differential_equations_1.md
with
30 additions
and
1 deletion
src/differential_equations_1.md
+
30
−
1
View file @
52004403
...
...
@@ -738,9 +738,38 @@ $$**x**(t) = c_1 e^{\lambda_1 t} **v**_1 + c_2(t e^{\lambda_1 t} **v**_1 + e^{\
1
\\
\e
nd{bmatrix}
\b
ig{)}.$$
### Case 3: Higher multiplicity eigenvalues###
In this case we consider the situation where the matrix $
**A**
$ has an
eigenvalue $
\l
ambda$ with multiplicity $m>2$, and only one eigenvector $
**v**
$
corresponding to $
\l
ambda$, $(
**A**
-
\l
ambda
\m
athbbm{1})
**v**
=0$. In this case notice
that $
**A**
$ must be at least an $m
\t
imes m$ matrix.
To solve such a situation, we will expand upon the result of the previous
section and define the vectors $
**v**
_2$ through $**v**_
{m}$ by
$
\b
egin{bmatrix}
\e
nd{bmatrix}$
$$(
**A**
-
\l
ambda
\m
athbbm{1})
**v**
_2 = **v**_
1$$
$$
\v
dots$$
$$(
**A**
-
\l
ambda
\m
athbbm{1})
**v**
_m = **v**_
{m-1}.$$
Then, the subset of the basis of solutions corresponding to eigenvalue $
\l
ambda$
is formed by the vectors
$$
**\phi**
_{k}(t) = e^{\lambda t} \big{(} \frac{t^{k-1}}{(k-1)!}**v**_
1 +
\c
dots + t
**v**
_{k-1} + **v_
{k}
**
\b
ig{)}
\ \f
orall k
\e
psilon
\{
1,
\c
dots, m
\}
.$$
To prove this, first take the derivative of $
**\phi**
_{k}(t)$,
$$
\d
ot{
**\phi**
_{k}(t)} = \lambda **\phi**_
{k}(t) + e^{
\l
ambda t}
\b
ig{(}
\f
rac{t^{k-2}}{(k-2)!}
**v**
_1 + \cdots + **v**_
{k-1}
\b
ig{)}.$$
Then, for comparison, mulitply $
**\phi**
_k(t)$ by $
**A**
$
$$
**A**
**\phi**
_k (t) = e^{\lambda t} \big{(} \frac{t^{k-1}}{(k-1)!}\lambda **v**_
1 +
\f
rac{t^{k-2}}{(k-2)!}
**A**
**v**
_2 + \cdots + **A** **v**_
{k-1} +
**A**
**v**
_k
\b
ig{)}$$
$$
**A**
**\phi**
_k (t) = \lambda **\phi**_
k (t) + e^{
\l
ambda t}
\b
ig{(}
\f
rac{t^{k-2}}{(k-2)!}(
**A**
-
\l
ambda
\m
athbbm{1})
**v**
_2 + \cdots + t (**A**- \lambda \mathbbm{1})**v**_
{k-1} + (
**A**
-
\l
ambda
\m
athbbm{1})
**v**
_{k}
\b
ig{)}$$
$$
**A**
**\phi**
_k (t) = \lambda **\phi**_
k (t) + e^{
\l
ambda t}
\b
ig{(}
\f
rac{t^{k-2}{(k-2)!}
**v**
_1 + \cdots + t **v**_
{k-2} +
**v**
_{k-1}
\b
ig{)}$$
$$
**A**
**\phi**
_k (t) = \dot{**\phi**}_
{k}(t).$$
Notice that in the second last line we made use of the relations
$(
**A**
-
\l
ambda
\m
athbbm{1})
**v**
_{i} = **v**_
{i-1}$. This completes the proof
since we have demonstrated that $
**\phi**
_{k}(t)$ is a solution of the DE.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment