Skip to content
Snippets Groups Projects
Commit 52004403 authored by Scarlett Gauthier's avatar Scarlett Gauthier
Browse files

Finish final case of page 9.

parent 297d1059
No related branches found
No related tags found
1 merge request!8Differential Equations Lecture 1
Pipeline #41439 passed
......@@ -738,9 +738,38 @@ $$**x**(t) = c_1 e^{\lambda_1 t} **v**_1 + c_2(t e^{\lambda_1 t} **v**_1 + e^{\
1 \\
\end{bmatrix}\big{)}.$$
### Case 3: Higher multiplicity eigenvalues###
In this case we consider the situation where the matrix $**A**$ has an
eigenvalue $\lambda$ with multiplicity $m>2$, and only one eigenvector $**v**$
corresponding to $\lambda$, $(**A** - \lambda \mathbbm{1})**v**=0$. In this case notice
that $**A**$ must be at least an $m \times m$ matrix.
To solve such a situation, we will expand upon the result of the previous
section and define the vectors $**v**_2$ through $**v**_{m}$ by
$\begin{bmatrix} \end{bmatrix}$
$$(**A**- \lambda \mathbbm{1}) **v**_2 = **v**_1$$
$$\vdots$$
$$(**A**- \lambda \mathbbm{1}) **v**_m = **v**_{m-1}.$$
Then, the subset of the basis of solutions corresponding to eigenvalue $\lambda$
is formed by the vectors
$$**\phi**_{k}(t) = e^{\lambda t} \big{(} \frac{t^{k-1}}{(k-1)!}**v**_1 + \cdots + t **v**_{k-1} + **v_{k}** \big{)} \ \forall k \epsilon \{1, \cdots, m \}.$$
To prove this, first take the derivative of $**\phi**_{k}(t)$,
$$\dot{**\phi**_{k}(t)} = \lambda **\phi**_{k}(t) + e^{\lambda t} \big{(} \frac{t^{k-2}}{(k-2)!}**v**_1 + \cdots + **v**_{k-1} \big{)}.$$
Then, for comparison, mulitply $**\phi**_k(t)$ by $**A**$
$$**A** **\phi**_k (t) = e^{\lambda t} \big{(} \frac{t^{k-1}}{(k-1)!}\lambda **v**_1 + \frac{t^{k-2}}{(k-2)!} **A** **v**_2 + \cdots + **A** **v**_{k-1} + **A** **v**_k \big{)}$$
$$**A** **\phi**_k (t) = \lambda **\phi**_k (t) + e^{\lambda t} \big{(} \frac{t^{k-2}}{(k-2)!}(**A**- \lambda \mathbbm{1})**v**_2 + \cdots + t (**A**- \lambda \mathbbm{1})**v**_{k-1} + (**A**- \lambda \mathbbm{1})**v**_{k} \big{)}$$
$$**A** **\phi**_k (t) = \lambda **\phi**_k (t) + e^{\lambda t} \big{(} \frac{t^{k-2}{(k-2)!} **v**_1 + \cdots + t **v**_{k-2} + **v**_{k-1} \big{)}$$
$$**A** **\phi**_k (t) = \dot{**\phi**}_{k}(t).$$
Notice that in the second last line we made use of the relations
$(**A**- \lambda \mathbbm{1})**v**_{i} = **v**_{i-1}$. This completes the proof
since we have demonstrated that $**\phi**_{k}(t)$ is a solution of the DE.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment