Skip to content
Snippets Groups Projects
Commit 5c535e51 authored by Sonia Conesa Boj's avatar Sonia Conesa Boj
Browse files

Update 3_vector_spaces.md

parent ea1e1277
No related branches found
No related tags found
No related merge requests found
Pipeline #42726 passed
......@@ -188,7 +188,7 @@ Therefore, we see that the scalar product of vectors in Euclidean space can be e
## Problems
**1)** [:grinning:] Find a unit vector parallel to the sum of $\vec{r}_1$ and $\vec{r}_2$, where we have defined
$$\vec{r}_1=2\vec{i}+4\vec{j}-5\vec{k}$$ and $$\vec{r}_2=\vec{i}+2\vec{j}+3\vec{k}$$.
$$\vec{r}_1=2\vec{i}+4\vec{j}-5\vec{k} \, , $$ and $$\vec{r}_2=\vec{i}+2\vec{j}+3\vec{k} \, .$$.
***
......@@ -207,8 +207,7 @@ Find the following quantities
***
**4)** [:grinning:] Find the vector product $\vec{b}X\vec{c}$ and the triple scalar product $\vec{a}\cdot(\vec{b}x\vec{c})$, where
**4)** [:grinning:] Find the vector product $\vec{b} \cross \vec{c}$ and the triple product $\vec{a}\cdot(\vec{b} \cross \vec{c})$, where
$$\vec{a}=\vec{i}+4\vec{j}+\vec{k}$$ and $$\vec{b}=-\vec{i}+2\cos{t}+2\vec{k}$$ and $$\vec{c}=2\vec{i}-\vec{k}$$
***
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment