Skip to content
Snippets Groups Projects
Commit 9cad2307 authored by Sonia Conesa Boj's avatar Sonia Conesa Boj
Browse files

Update 4_vector_spaces_QM.md

parent 91208b5a
No related branches found
No related tags found
No related merge requests found
Pipeline #42703 passed
......@@ -127,10 +127,10 @@ $$
\hat{I} = \sum_i |\phi_i\rangle|\phi_i\rangle \, ,
$$
We can insert this identify operator within the bracket to evaluate the inner
product $\langle \chi|\psi\rangle$ between the two state vectors to evaluate the inner product $\langle \chi}|\psi\rangle$:
product $\langle \chi|\psi\rangle$ between the two state vectors to evaluate the inner product $\langle \chi|\psi\rangle$:
$$
\langle \chi|\psi\rangle=
\langle\chi|\hat{I} |\psi\rangle=\sum_i\langle\chi|\phi_i\rangle\langle\phi_n}|\psi\rangle \, .
\langle\chi|\hat{I} |\psi\rangle=\sum_{i=1}^n \langle\chi| \phi_i \rangle \langle\phi_i|\psi\rangle \, .
$$
Next, using that $\chi_n = \langle \phi_i|\chi \rangle$ are the components of the
state vector $|\chi\rangle$ and that $\langle \chi| \phi_n \rangle=(\langle\phi_n|\chi\rangle)^*$,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment