First major update of src/2_coordinates.md
Compare changes
+ 71
− 49
@@ -29,7 +29,7 @@ and $(x'_1, x'_2, \ldots, x'_n)$ can be quickly computed using a general formula
@@ -70,7 +70,7 @@ the angular coordinate $\varphi$ is dimensionless.
@@ -87,10 +87,10 @@ $$\begin{equation} y = r \sin \varphi.\end{equation}$$
@@ -117,7 +117,10 @@ If we consider two points which are *very close*, the analysis
@@ -161,7 +164,7 @@ understood: the area swept by an angle difference $d\varphi$
@@ -169,7 +172,7 @@ The derivative operator $\left(\frac{\partial^2}{\partial x^2} +
@@ -178,7 +181,7 @@ There are different ways to find the answer. Here, we will focus on
@@ -192,7 +195,7 @@ of a function of $r, \varphi$ in terms of $x$?
@@ -211,22 +214,22 @@ $$ \frac{\partial}{\partial x} f(r, \varphi) =
@@ -236,10 +239,10 @@ it's usually best to look up the correct form.
@@ -247,22 +250,27 @@ coordinates $r$ and $\varphi$ in the $xy$ plane, and the distance $z$
@@ -273,29 +281,39 @@ and (2) the direction of the line connecting the origin to our point.
@@ -313,7 +331,11 @@ $$ds^2 = r^2 \left(\sin^2 \vartheta d\varphi^2 + d\vartheta^2\right) + dr^2.$$