First major update of src/2_coordinates.md
Compare changes
Files
2+ 114
− 84
@@ -21,7 +21,7 @@ The most common coordinates are *Cartesian coordinates*, where we use a
@@ -29,7 +29,7 @@ and $(x'_1, x'_2, \ldots, x'_n)$ can be quickly computed using a general formula
@@ -37,7 +37,7 @@ distances, for example in the definition of derivatives and integrals.
@@ -70,7 +70,7 @@ the angular coordinate $\varphi$ is dimensionless.
@@ -87,10 +87,10 @@ $$\begin{equation} y = r \sin \varphi.\end{equation}$$
@@ -117,7 +117,10 @@ If we consider two points which are *very close*, the analysis
@@ -133,7 +136,7 @@ We can use the same arguments also for the area: since the different
@@ -161,7 +164,7 @@ understood: the area swept by an angle difference $d\varphi$
@@ -169,7 +172,7 @@ The derivative operator $\left(\frac{\partial^2}{\partial x^2} +
@@ -178,7 +181,7 @@ There are different ways to find the answer. Here, we will focus on
@@ -192,7 +195,7 @@ of a function of $r, \varphi$ in terms of $x$?
@@ -211,22 +214,22 @@ $$ \frac{\partial}{\partial x} f(r, \varphi) =
@@ -236,10 +239,10 @@ it's usually best to look up the correct form.
@@ -247,22 +250,27 @@ coordinates $r$ and $\varphi$ in the $xy$ plane, and the distance $z$
@@ -273,91 +281,106 @@ and (2) the direction of the line connecting the origin to our point.
@@ -379,7 +402,8 @@ We have discussed four different coordinate systems:
@@ -389,26 +413,32 @@ We have discussed four different coordinate systems:
@@ -420,7 +450,7 @@ We have discussed four different coordinate systems: