1st major update to lecture note 4
Compare changes
+ 69
− 77
@@ -14,7 +14,7 @@ The lecture on vector spaces in quantum mechanics consists of the following part
@@ -76,105 +76,97 @@ The set of all possible state vectors describing a given physical system forms a
We need now to extend the Dirac notation to describe other elements of this vector space. We need to introduce a quantity $\langle{\Psi}|$, known as a *bra vector*, which represents the *complex conjugates* of the corresponding ket vector. Bra vectors are elements of the vector space $\mathcal{H}^{*}$, called the *dual space* of the original Hilbert space $\mathcal{H}$.
The value of the inner product $\langle{\psi}|{\phi}\rangle$ indicates the *probability amplitude* (not the probability) of measuring a system characterised by the state $|{\phi}\rangle$ to be in the state $|{\psi}\rangle$. This inner product can also be understood as measuring the *overlap* between the state vectors $|{\psi}\rangle$ and $|{\phi}\rangle$. Then the *probability* of observing the system to be in the state $|\psi\rangle$ given that it is in the state $|\phi\rangle$ will be given by $|\langle \psi | \phi \rangle|^2$. Since the latter quantity is a probability, we know that it should satisfy the condition that $0 \le |\langle \psi | \phi \rangle|^2 \le 1$.
- *Orthogonality*: two states $|\psi \rangle$ and $|\phi \rangle$ are said to be *orthogonal* if $\langle \psi | \phi\rangle=0$. By analogy with regular vector spaces, we can think of these two state vectors $|\psi \rangle$ and $|\phi \rangle$ as being *perpendicular* to each other. Note that for a quantum system occupying a certain state, there is a vanishing probability of it being observed in a state orthogonal to it.
You can see from the properties of complex algebra that this length must be a real number. A physically valid state $|\psi \rangle$ must be normalized to unity, that is $\langle \psi | \psi \rangle=1$. Note that a state that cannot be normalized to unity does not represent a physically acceptable state.
From all the above conditions we see that a Hilbert space is a so-called *complex inner product space*, which is nothing but a complex vector space equipped with a inner product. All the vectors belonging to a Hilbert space $\mathcal{H}$ have a finite norm, that is they can be normalized to unity. This normalisation condition is essential is we are to apply the probabilistic interpretation of the state vectors described above.
From all the above conditions, we see that a Hilbert space is a so-called *complex inner product space*, which is nothing else but a complex vector space equipped with a inner product. All the vectors belonging to a Hilbert space $\mathcal{H}$ have a finite norm, which means that they can be normalized to unity. This normalisation condition is essential is we are to apply the probabilistic interpretation of the state vectors described above.
By analogy with the Euclidean case, we can understand the coefficients $\psi_i$ as the *components* of the state vector $ |\psi\rangle$ along the $n$ directions spanned by the basis vectors. Here, note also that in this notation $\psi_i$ is an *scalar* (just a number) and not a vector. Furthermore, note that, as opposed to the Euclidean space, the coefficients $\psi_i$ will generally be complex numbers.