Skip to content
Snippets Groups Projects

Addressing #16

Merged Maciej Topyla requested to merge maciejedits into master
+ 24
32
@@ -47,7 +47,7 @@ of vector space). We can express the previous equation in terms of its component
assuming as usual some specific choice of basis, by using
the rules of matrix multiplication:
!!! tip "Eigenvalue equation: Eigenvalue and Eigenvector"
!!! info "Eigenvalue equation: Eigenvalue and Eigenvector"
$$
\sum_{j=1}^n A_{ij} v_j = \lambda v_i \, .
$$
@@ -57,7 +57,7 @@ the rules of matrix multiplication:
!!! warning "Number of solutions"
In general, there will be multiple solutions to the eigenvalue equation $A \vec{v} =\lambda \vec{v}$, each one characterised by an specific eigenvalue and eigenvectors. Note that in some cases one has *degenerate solutions*, whereby a given matrix has two or more eigenvectors that are equal.
!!! info "Characteristic equation:"
!!! tip "Characteristic equation:"
In order to determine the eigenvalues of the matrix $A$, we need to evaluate the solutions of the so-called *characteristic equation*
of the matrix $A$, defined as
$$
@@ -225,43 +225,35 @@ The set of all the eigenvalues of an operator is called *eigenvalue spectrum* of
##Problems
**1)** *Eigenvalues and Eigenvectors*
1. *Eigenvalues and Eigenvectors*
Find the characteristic polynomial and eigenvalues for each of the following matrices,
Find the characteristic polynomial and eigenvalues for each of the following matrices,
$$A=\begin{pmatrix} 5&3\\2&10 \end{pmatrix}\, \quad
B=\begin{pmatrix} 7i&-1\\2&6i \end{pmatrix} \, \quad C=\begin{pmatrix} 2&0&-1\\0&3&1\\1&0&4 \end{pmatrix}$$
$$A=\begin{pmatrix} 5&3\\2&10 \end{pmatrix}\, \quad
B=\begin{pmatrix} 7i&-1\\2&6i \end{pmatrix} \, \quad C=\begin{pmatrix} 2&0&-1\\0&3&1\\1&0&4 \end{pmatrix}$$
2. The Hamiltonian for a two-state system is given by
$$H=\begin{pmatrix} \omega_1&\omega_2\\ \omega_2&\omega_1\end{pmatrix}$$
A basis for this system is
$$|{0}\rangle=\begin{pmatrix}1\\0 \end{pmatrix}\, ,\quad|{1}\rangle=\begin{pmatrix}0\\1 \end{pmatrix}$$
Find the eigenvalues and eigenvectors of the Hamiltonian $H$, and express the eigenvectors in terms of $\{|0 \rangle,|1\rangle \}$
**2)** The Hamiltonian for a two-state system is given by
$$H=\begin{pmatrix} \omega_1&\omega_2\\ \omega_2&\omega_1\end{pmatrix}$$
A basis for this system is
$$|{0}\rangle=\begin{pmatrix}1\\0 \end{pmatrix}\, ,\quad|{1}\rangle=\begin{pmatrix}0\\1 \end{pmatrix}$$
3. Find the eigenvalues and eigenvectors of the matrices
Find the eigenvalues and eigenvectors of the Hamiltonian $H$, and express the eigenvectors in terms of $\{|0 \rangle,|1\rangle \}$
$$A=\begin{pmatrix} -2&-1&-1\\6&3&2\\0&0&1 \end{pmatrix}\, \quad B=\begin{pmatrix} 1&1&2\\2&2&2\\-1&-1&-1 \end{pmatrix} $$.
4. *The Hadamard gate*
**3)** Find the eigenvalues and eigenvectors of the matrices
In one of the problems of the previous section we discussed that an important operator used in quantum computation is the *Hadamard gate*, which is represented by the matrix:
$$\hat{H}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix} \, .$$
Determine the eigenvalues and eigenvectors of this operator.
$$A=\begin{pmatrix} -2&-1&-1\\6&3&2\\0&0&1 \end{pmatrix}\, \quad B=\begin{pmatrix} 1&1&2\\2&2&2\\-1&-1&-1 \end{pmatrix} $$.
5. Show that the Hermitian matrix
**4)** *The Hadamard gate*
$$\begin{pmatrix} 0&0&i\\0&1&0\\-i&0&0 \end{pmatrix}$$
has only two real eigenvalues and find and orthonormal set of three eigenvectors.
In one of the problems of the previous section we discussed that an important operator used in quantum computation is the *Hadamard gate*, which is represented by the matrix:
$$\hat{H}=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\1&-1\end{pmatrix} \, .$$
Determine the eigenvalues and eigenvectors of this operator.
6. Confirm, by explicit calculation, that the eigenvalues of the real, symmetric matrix
**5)** Show that the Hermitian matrix
$$\begin{pmatrix} 0&0&i\\0&1&0\\-i&0&0 \end{pmatrix}$$
has only two real eigenvalues and find and orthonormal set of three eigenvectors.
**6)**
Confirm, by explicit calculation, that the eigenvalues of the real, symmetric matrix
$$\begin{pmatrix} 2&1&2\\1&2&2\\2&2&1 \end{pmatrix}$$
are real, and its eigenvectors are orthogonal.
$$\begin{pmatrix} 2&1&2\\1&2&2\\2&2&1 \end{pmatrix}$$
are real, and its eigenvectors are orthogonal.
Loading