Recall from the discussions of eigenvalue equations in linear algebra that
the eigenvectors $|\psi_i\rangle$ are defined *up to an overall normalisation constant*. Clearly, if $|\psi_i\rangle$ is a solution of $\hat{A}|\psi_i\rangle = \lambda_{\psi_i}|\psi_i\rangle$
then $c|\psi_i\rangle$ will also be a solution, with $c$ some constant. In the context of quantum mechanics, we need to choose this overall rescaling constant
to ensure that the eigenvectors are normalised, that is, that they satisfy
then $c|\psi_i\rangle$ will also be a solution, with $c$ being a constant. In the context of quantum mechanics, we need to choose this overall rescaling constant to ensure that the eigenvectors are normalised, thus they satisfy
With such a choice of normalisation, one says that the set of eigenvectors
With such a choice of normalisation, one says that the eigenvectors in a set
are *orthogonal* among them.
The set of all the eigenvalues of an operator is called *eigenvalue spectrum* of the operator. Note that different eigenvectors can also have the same eigenvalue. If this is the case the eigenvalue is said to be *degenerate*.
!!! tip "Eigenvalue spectrum and degeneracy"
The set of all eigenvalues of an operator is called the *eigenvalue spectrum* of an operator. Note that different eigenvectors can also have the same eigenvalue. If this is the case the eigenvalue is said to be *degenerate*.
***
##Problems
##6.3. Problems
1.*Eigenvalues and Eigenvectors*
1.*Eigenvalues and eigenvectors I*
Find the characteristic polynomial and eigenvalues for each of the following matrices,