Add lecture notes for coordinates
Compare changes
Files
2+ 26
− 26
@@ -21,7 +21,7 @@ such a distance definition is called a *Euclidean space*.
@@ -40,7 +40,7 @@ Note that each Cartesian coordinate has a *dimension* of length; in
@@ -50,7 +50,7 @@ $(r,\varphi)$ indicated. From this, we can see that the *Cartesian*
@@ -65,7 +65,7 @@ If we consider two points which are *very close*, the analysis
@@ -120,7 +120,7 @@ $\varphi$, is of course dimensionless.
@@ -141,7 +141,7 @@ and (2) the direction of the line connecting the origin to our point.
@@ -164,7 +164,7 @@ $$\phi = \begin{cases} \arctan(y/x) &{\rm for ~} x>0; \\
@@ -182,35 +182,35 @@ $$ds^2 = r^2 \left(\sin^2 \vartheta d\varphi^2 + d\vartheta^2\right) + dr^2.$$
@@ -221,13 +221,13 @@ Problems
@@ -237,12 +237,12 @@ Problems