Skip to content
Snippets Groups Projects

Add lecture notes for coordinates

Merged Michael Wimmer requested to merge coordinates into master
+ 18
7
@@ -2,11 +2,7 @@
title: Coordinates
---
# Coordinates
## Cartesian coordinates
# Cartesian coordinates
The most common coordinates are *Cartesian coordinates*, where we use a
number $n$ of perpendicular axes. The coordinates corresponding to these
@@ -44,8 +40,9 @@ infinite spaces or for rectangular volumes.
![image](figures/Coordinates_5_1.svg)
## Polar coordinates
# Polar coordinates
## Definition
It often turns out useful to change to a different type of coordinate
system. For example, if you want to describe the vibrations of a
@@ -68,10 +65,24 @@ from the angular one ($0^\circ$, $45^\circ$ etc.).
The plot below shows a point on a curve with the polar coordinates
$(r,\varphi)$ indicated. From this, we can see that the *Cartesian*
coordinates $(x,y)$ of the point are related to the polar ones as
follows: $$x = r \cos\varphi;$$ $$y = r \sin \varphi.$$
follows:
$$x = r \cos\varphi;$$
$$y = r \sin \varphi.$$
![image](figures/Coordinates_9_0.svg)
The inverse relation is given as
$$r=\sqrt{x^2 + y^2};$$
$$\varphi=\begin{cases}
\arctan(y/x) & \text{$x>0$,}\\
\pi + \arctan(y/x) & \text{$x<0$ and $y>0$,}\\
-\pi + \arctan(y/x) & \text{$x<0$ and $y<0$.}
\end{cases}$$
## Distances and areas
Now suppose we want to calculate the distance between two points, one
with polar coordinates $(r_1, \varphi_1)$, and the other with
$(r_2, \varphi_2)$. This looks like a difficult exercise. A convenient
Loading