Skip to content
Snippets Groups Projects
Commit 204bfe45 authored by Bas Nijholt's avatar Bas Nijholt
Browse files

add line

parent 2ff52eb9
No related branches found
No related tags found
No related merge requests found
Pipeline #21085 passed
......@@ -61,6 +61,7 @@ Plotting a function in between bounds requires one to evaluate the function on s
In order to minimize the number of points, one can use adaptive sampling routines.
For example, for one-dimensional functions, Mathematica implements a `FunctionInterpolation` class that takes the function, $x_\textrm{min}$, and $x_\textrm{max}$, and returns an object which sampled the function in regions with high curvature more densily.
Subsequently, we can query this object for points in between $x_\textrm{min}$ and $x_\textrm{max}$, and get the interpolated value or we can use it to plot the function without specifying a grid.
Another application for adaptive sampling is integration.
The `CQUAD` doubly-adaptive integration algorithm[@gonnet2010increasing] in the GNU Scientific Library[@galassi1996gnu] is a general-purpose integration routine which can handle most types of singularities.
In general, it requires more function evaluations than the integration routines in `QUADPACK`[@galassi1996gnu]; however, it works more often for difficult integrands.
It is doubly-adaptive because it calculates errors for each interval and can either split up intervals into more intervals or add more points to each interval.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment