Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
adaptive-paper
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
adaptive-paper
Commits
3511b945
Commit
3511b945
authored
5 years ago
by
Bas Nijholt
Browse files
Options
Downloads
Patches
Plain Diff
simplify
parent
7a4f44eb
No related branches found
No related tags found
No related merge requests found
Pipeline
#21719
passed
5 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
paper.md
+4
-5
4 additions, 5 deletions
paper.md
with
4 additions
and
5 deletions
paper.md
+
4
−
5
View file @
3511b945
...
...
@@ -323,19 +323,18 @@ runner = Runner(learner, goal)
Again, like the
`Learner1D`
, it is possible to specify a custom loss function.
For example, the loss function used to find the iso-line in Fig. @fig:isoline (b) is
```
python
def
isoline_loss_function
(
level
,
sigma
,
priority
):
from
adaptive.learner.learnerND
import
default_loss
from
adaptive.learner.learnerND
import
default_loss
def
gaussian
(
x
,
mu
,
sigma
):
return
np
.
exp
(
-
(
x
-
mu
)
**
2
/
sigma
**
2
/
2
)
def
gaussian
(
x
,
mu
,
sigma
):
return
np
.
exp
(
-
(
x
-
mu
)
**
2
/
sigma
**
2
/
2
)
def
isoline_loss_function
(
level
,
sigma
,
priority
):
def
loss
(
simplex
,
values
,
value_scale
):
values
=
np
.
array
(
values
)
dist
=
abs
(
level
*
value_scale
-
values
).
mean
()
L_default
=
default_loss
(
simplex
,
values
,
value_scale
)
L_dist
=
priority
*
gaussian
(
dist
,
0
,
sigma
)
return
L_dist
+
L_default
return
loss
loss_per_simplex
=
isoline_loss_function
(
0.1
,
0.4
,
0.5
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment