Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
adaptive-paper
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
adaptive-paper
Commits
56fea80d
Commit
56fea80d
authored
5 years ago
by
Bas Nijholt
Browse files
Options
Downloads
Patches
Plain Diff
add pfaffian.py
parent
c372cfe8
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#21724
passed
5 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
pfaffian.py
+484
-0
484 additions, 0 deletions
pfaffian.py
with
484 additions
and
0 deletions
pfaffian.py
0 → 100644
+
484
−
0
View file @
56fea80d
"""
A package for computing Pfaffians
"""
import
numpy
as
np
import
scipy.linalg
as
la
import
scipy.sparse
as
sp
import
math
import
cmath
def
householder_real
(
x
):
"""
(v, tau, alpha) = householder_real(x)
Compute a Householder transformation such that
(1-tau v v^T) x = alpha e_1
where x and v a real vectors, tau is 0 or 2, and
alpha a real number (e_1 is the first unit vector)
"""
assert
x
.
shape
[
0
]
>
0
sigma
=
x
[
1
:]
@
x
[
1
:]
if
sigma
==
0
:
return
(
np
.
zeros
(
x
.
shape
[
0
]),
0
,
x
[
0
])
else
:
norm_x
=
math
.
sqrt
(
x
[
0
]
**
2
+
sigma
)
v
=
x
.
copy
()
# depending on whether x[0] is positive or negatvie
# choose the sign
if
x
[
0
]
<=
0
:
v
[
0
]
-=
norm_x
alpha
=
+
norm_x
else
:
v
[
0
]
+=
norm_x
alpha
=
-
norm_x
v
/=
np
.
linalg
.
norm
(
v
)
return
(
v
,
2
,
alpha
)
def
householder_complex
(
x
):
"""
(v, tau, alpha) = householder_real(x)
Compute a Householder transformation such that
(1-tau v v^T) x = alpha e_1
where x and v a complex vectors, tau is 0 or 2, and
alpha a complex number (e_1 is the first unit vector)
"""
assert
x
.
shape
[
0
]
>
0
sigma
=
np
.
conj
(
x
[
1
:])
@
x
[
1
:]
if
sigma
==
0
:
return
(
np
.
zeros
(
x
.
shape
[
0
]),
0
,
x
[
0
])
else
:
norm_x
=
cmath
.
sqrt
(
x
[
0
].
conjugate
()
*
x
[
0
]
+
sigma
)
v
=
x
.
copy
()
phase
=
cmath
.
exp
(
1j
*
math
.
atan2
(
x
[
0
].
imag
,
x
[
0
].
real
))
v
[
0
]
+=
phase
*
norm_x
v
/=
np
.
linalg
.
norm
(
v
)
return
(
v
,
2
,
-
phase
*
norm_x
)
def
skew_tridiagonalize
(
A
,
overwrite_a
=
False
,
calc_q
=
True
):
"""
T, Q = skew_tridiagonalize(A, overwrite_a, calc_q=True)
or
T = skew_tridiagonalize(A, overwrite_a, calc_q=False)
Bring a real or complex skew-symmetric matrix (A=-A^T) into
tridiagonal form T (with zero diagonal) with a orthogonal
(real case) or unitary (complex case) matrix U such that
A = Q T Q^T
(Note that Q^T and *not* Q^dagger also in the complex case)
A is overwritten if overwrite_a=True (default: False), and
Q only calculated if calc_q=True (default: True)
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
n
=
A
.
shape
[
0
]
A
=
np
.
asarray
(
A
)
# the slice views work only properly for arrays
# Check if we have a complex data type
if
np
.
issubdtype
(
A
.
dtype
,
np
.
complexfloating
):
householder
=
householder_complex
elif
not
np
.
issubdtype
(
A
.
dtype
,
np
.
number
):
raise
TypeError
(
"
pfaffian() can only work on numeric input
"
)
else
:
householder
=
householder_real
if
not
overwrite_a
:
A
=
A
.
copy
()
if
calc_q
:
Q
=
np
.
eye
(
A
.
shape
[
0
],
dtype
=
A
.
dtype
)
for
i
in
range
(
A
.
shape
[
0
]
-
2
):
# Find a Householder vector to eliminate the i-th column
v
,
tau
,
alpha
=
householder
(
A
[
i
+
1
:,
i
])
A
[
i
+
1
,
i
]
=
alpha
A
[
i
,
i
+
1
]
=
-
alpha
A
[
i
+
2
:,
i
]
=
0
A
[
i
,
i
+
2
:]
=
0
# Update the matrix block A(i+1:N,i+1:N)
w
=
tau
*
A
[
i
+
1
:,
i
+
1
:]
@
v
.
conj
()
A
[
i
+
1
:,
i
+
1
:]
+=
np
.
outer
(
v
,
w
)
-
np
.
outer
(
w
,
v
)
if
calc_q
:
# Accumulate the individual Householder reflections
# Accumulate them in the form P_1*P_2*..., which is
# (..*P_2*P_1)^dagger
y
=
tau
*
Q
[:,
i
+
1
:]
@
v
Q
[:,
i
+
1
:]
-=
np
.
outer
(
y
,
v
.
conj
())
if
calc_q
:
return
(
np
.
asmatrix
(
A
),
np
.
asmatrix
(
Q
))
else
:
return
np
.
asmatrix
(
A
)
def
skew_LTL
(
A
,
overwrite_a
=
False
,
calc_L
=
True
,
calc_P
=
True
):
"""
T, L, P = skew_LTL(A, overwrite_a, calc_q=True)
Bring a real or complex skew-symmetric matrix (A=-A^T) into
tridiagonal form T (with zero diagonal) with a lower unit
triangular matrix L such that
P A P^T= L T L^T
A is overwritten if overwrite_a=True (default: False),
L and P only calculated if calc_L=True or calc_P=True,
respectively (default: True).
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
n
=
A
.
shape
[
0
]
A
=
np
.
asarray
(
A
)
# the slice views work only properly for arrays
if
not
overwrite_a
:
A
=
A
.
copy
()
if
calc_L
:
L
=
np
.
eye
(
n
,
dtype
=
A
.
dtype
)
if
calc_P
:
Pv
=
np
.
arange
(
n
)
for
k
in
range
(
n
-
2
):
# First, find the largest entry in A[k+1:,k] and
# permute it to A[k+1,k]
kp
=
k
+
1
+
np
.
abs
(
A
[
k
+
1
:,
k
]).
argmax
()
# Check if we need to pivot
if
kp
!=
k
+
1
:
# interchange rows k+1 and kp
temp
=
A
[
k
+
1
,
k
:].
copy
()
A
[
k
+
1
,
k
:]
=
A
[
kp
,
k
:]
A
[
kp
,
k
:]
=
temp
# Then interchange columns k+1 and kp
temp
=
A
[
k
:,
k
+
1
].
copy
()
A
[
k
:,
k
+
1
]
=
A
[
k
:,
kp
]
A
[
k
:,
kp
]
=
temp
if
calc_L
:
# permute L accordingly
temp
=
L
[
k
+
1
,
1
:
k
+
1
].
copy
()
L
[
k
+
1
,
1
:
k
+
1
]
=
L
[
kp
,
1
:
k
+
1
]
L
[
kp
,
1
:
k
+
1
]
=
temp
if
calc_P
:
# accumulate the permutation matrix
temp
=
Pv
[
k
+
1
]
Pv
[
k
+
1
]
=
Pv
[
kp
]
Pv
[
kp
]
=
temp
# Now form the Gauss vector
if
A
[
k
+
1
,
k
]
!=
0.0
:
tau
=
A
[
k
+
2
:,
k
].
copy
()
tau
/=
A
[
k
+
1
,
k
]
# clear eliminated row and column
A
[
k
+
2
:,
k
]
=
0.0
A
[
k
,
k
+
2
:]
=
0.0
# Update the matrix block A(k+2:,k+2)
A
[
k
+
2
:,
k
+
2
:]
+=
np
.
outer
(
tau
,
A
[
k
+
2
:,
k
+
1
])
A
[
k
+
2
:,
k
+
2
:]
-=
np
.
outer
(
A
[
k
+
2
:,
k
+
1
],
tau
)
if
calc_L
:
L
[
k
+
2
:,
k
+
1
]
=
tau
if
calc_P
:
# form the permutation matrix as a sparse matrix
P
=
sp
.
csr_matrix
((
np
.
ones
(
n
),
(
np
.
arange
(
n
),
Pv
)))
if
calc_L
:
if
calc_P
:
return
(
np
.
asmatrix
(
A
),
np
.
asmatrix
(
L
),
P
)
else
:
return
(
np
.
asmatrix
(
A
),
np
.
asmatrix
(
L
))
else
:
if
calc_P
:
return
(
np
.
asmatrix
(
A
),
P
)
else
:
return
np
.
asmatrix
(
A
)
def
pfaffian
(
A
,
overwrite_a
=
False
,
method
=
'
P
'
,
sign_only
=
False
):
"""
pfaffian(A, overwrite_a=False, method=
'
P
'
)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
either the Parlett-Reid algorithm (method=
'
P
'
, default),
or the Householder tridiagonalization (method=
'
H
'
)
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
,
abs
((
A
+
A
.
T
).
max
())
# Check that the method variable is appropriately set
assert
method
==
'
P
'
or
method
==
'
H
'
if
method
==
'
H
'
and
sign_only
:
raise
Exception
(
"
Use `method=
'
P
'
` when using `sign_only=True`
"
)
if
method
==
'
P
'
:
return
pfaffian_LTL
(
A
,
overwrite_a
,
sign_only
)
else
:
return
pfaffian_householder
(
A
,
overwrite_a
)
def
pfaffian_LTL
(
A
,
overwrite_a
=
False
,
sign_only
=
False
):
"""
pfaffian_LTL(A, overwrite_a=False)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
the Parlett-Reid algorithm.
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
n
=
A
.
shape
[
0
]
A
=
np
.
asarray
(
A
)
# the slice views work only properly for arrays
# Quick return if possible
if
n
%
2
==
1
:
return
0
if
not
overwrite_a
:
A
=
A
.
copy
()
pfaffian_val
=
1.0
for
k
in
range
(
0
,
n
-
1
,
2
):
# First, find the largest entry in A[k+1:,k] and
# permute it to A[k+1,k]
kp
=
k
+
1
+
np
.
abs
(
A
[
k
+
1
:,
k
]).
argmax
()
# Check if we need to pivot
if
kp
!=
k
+
1
:
# interchange rows k+1 and kp
temp
=
A
[
k
+
1
,
k
:].
copy
()
A
[
k
+
1
,
k
:]
=
A
[
kp
,
k
:]
A
[
kp
,
k
:]
=
temp
# Then interchange columns k+1 and kp
temp
=
A
[
k
:,
k
+
1
].
copy
()
A
[
k
:,
k
+
1
]
=
A
[
k
:,
kp
]
A
[
k
:,
kp
]
=
temp
# every interchange corresponds to a "-" in det(P)
pfaffian_val
*=
-
1
# Now form the Gauss vector
if
A
[
k
+
1
,
k
]
!=
0.0
:
tau
=
A
[
k
,
k
+
2
:].
copy
()
tau
/=
A
[
k
,
k
+
1
]
if
sign_only
:
pfaffian_val
*=
np
.
sign
(
A
[
k
,
k
+
1
])
else
:
pfaffian_val
*=
A
[
k
,
k
+
1
]
if
k
+
2
<
n
:
# Update the matrix block A(k+2:,k+2)
A
[
k
+
2
:,
k
+
2
:]
+=
np
.
outer
(
tau
,
A
[
k
+
2
:,
k
+
1
])
A
[
k
+
2
:,
k
+
2
:]
-=
np
.
outer
(
A
[
k
+
2
:,
k
+
1
],
tau
)
else
:
# if we encounter a zero on the super/subdiagonal, the
# Pfaffian is 0
return
0.0
return
pfaffian_val
def
pfaffian_householder
(
A
,
overwrite_a
=
False
):
"""
pfaffian(A, overwrite_a=False)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses the
Householder tridiagonalization.
Note that the function pfaffian_schur() can also be used in the
real case. That function does not make use of the skew-symmetry
and is only slightly slower than pfaffian_householder().
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
n
=
A
.
shape
[
0
]
# Quick return if possible
if
n
%
2
==
1
:
return
0
# Check if we have a complex data type
if
np
.
issubdtype
(
A
.
dtype
,
np
.
complexfloating
):
householder
=
householder_complex
elif
not
np
.
issubdtype
(
A
.
dtype
,
np
.
number
):
raise
TypeError
(
"
pfaffian() can only work on numeric input
"
)
else
:
householder
=
householder_real
A
=
np
.
asarray
(
A
)
# the slice views work only properly for arrays
if
not
overwrite_a
:
A
=
A
.
copy
()
pfaffian_val
=
1.
for
i
in
range
(
A
.
shape
[
0
]
-
2
):
# Find a Householder vector to eliminate the i-th column
v
,
tau
,
alpha
=
householder
(
A
[
i
+
1
:,
i
])
A
[
i
+
1
,
i
]
=
alpha
A
[
i
,
i
+
1
]
=
-
alpha
A
[
i
+
2
:,
i
]
=
0
A
[
i
,
i
+
2
:]
=
0
# Update the matrix block A(i+1:N,i+1:N)
w
=
tau
*
A
[
i
+
1
:,
i
+
1
:]
@
v
.
conj
()
A
[
i
+
1
:,
i
+
1
:]
+=
np
.
outer
(
v
,
w
)
-
np
.
outer
(
w
,
v
)
if
tau
!=
0
:
pfaffian_val
*=
1
-
tau
if
i
%
2
==
0
:
pfaffian_val
*=
-
alpha
pfaffian_val
*=
A
[
n
-
2
,
n
-
1
]
return
pfaffian_val
def
pfaffian_schur
(
A
,
overwrite_a
=
False
):
"""
Calculate Pfaffian of a real antisymmetric matrix using
the Schur decomposition. (Hessenberg would in principle be faster,
but scipy-0.8 messed up the performance for scipy.linalg.hessenberg()).
This function does not make use of the skew-symmetry of the matrix A,
but uses a LAPACK routine that is coded in FORTRAN and hence faster
than python. As a consequence, pfaffian_schur is only slightly slower
than pfaffian().
"""
assert
np
.
issubdtype
(
A
.
dtype
,
np
.
number
)
and
not
np
.
issubdtype
(
A
.
dtype
,
np
.
complexfloating
)
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
assert
abs
(
A
+
A
.
T
).
max
()
<
1e-14
# Quick return if possible
if
A
.
shape
[
0
]
%
2
==
1
:
return
0
(
t
,
z
)
=
la
.
schur
(
A
,
output
=
'
real
'
,
overwrite_a
=
overwrite_a
)
l
=
np
.
diag
(
t
,
1
)
return
np
.
prod
(
l
[::
2
])
*
la
.
det
(
z
)
def
pfaffian_sign
(
A
,
overwrite_a
=
False
):
"""
pfaffian(A, overwrite_a=False, method=
'
P
'
)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
either the Parlett-Reid algorithm (method=
'
P
'
, default),
or the Householder tridiagonalization (method=
'
H
'
)
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
,
abs
((
A
+
A
.
T
).
max
())
return
pfaffian_LTL_sign
(
A
,
overwrite_a
)
def
pfaffian_LTL_sign
(
A
,
overwrite_a
=
False
):
"""
MODIFIED FROM pfaffian_LTL(A, overwrite_a=False)
Compute the Pfaffian of a real or complex skew-symmetric
matrix A (A=-A^T). If overwrite_a=True, the matrix A
is overwritten in the process. This function uses
the Parlett-Reid algorithm.
"""
# Check if matrix is square
assert
A
.
shape
[
0
]
==
A
.
shape
[
1
]
>
0
# Check if it's skew-symmetric
assert
abs
((
A
+
A
.
T
).
max
())
<
1e-14
n
=
A
.
shape
[
0
]
A
=
np
.
asarray
(
A
)
# the slice views work only properly for arrays
# Quick return if possible
if
n
%
2
==
1
:
return
0
if
not
overwrite_a
:
A
=
A
.
copy
()
pfaffian_val
=
1.0
for
k
in
range
(
0
,
n
-
1
,
2
):
# First, find the largest entry in A[k+1:,k] and
# permute it to A[k+1,k]
kp
=
k
+
1
+
np
.
abs
(
A
[
k
+
1
:,
k
]).
argmax
()
# Check if we need to pivot
if
kp
!=
k
+
1
:
# interchange rows k+1 and kp
temp
=
A
[
k
+
1
,
k
:].
copy
()
A
[
k
+
1
,
k
:]
=
A
[
kp
,
k
:]
A
[
kp
,
k
:]
=
temp
# Then interchange columns k+1 and kp
temp
=
A
[
k
:,
k
+
1
].
copy
()
A
[
k
:,
k
+
1
]
=
A
[
k
:,
kp
]
A
[
k
:,
kp
]
=
temp
# every interchange corresponds to a "-" in det(P)
pfaffian_val
*=
-
1
# Now form the Gauss vector
if
A
[
k
+
1
,
k
]
!=
0.0
:
tau
=
A
[
k
,
k
+
2
:].
copy
()
tau
/=
A
[
k
,
k
+
1
]
pfaffian_val
*=
A
[
k
,
k
+
1
]
if
k
+
2
<
n
:
# Update the matrix block A(k+2:,k+2)
A
[
k
+
2
:,
k
+
2
:]
+=
np
.
outer
(
tau
,
A
[
k
+
2
:,
k
+
1
])
A
[
k
+
2
:,
k
+
2
:]
-=
np
.
outer
(
A
[
k
+
2
:,
k
+
1
],
tau
)
else
:
# if we encounter a zero on the super/subdiagonal, the
# Pfaffian is 0
return
0.0
return
pfaffian_val
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment