Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
adaptive-paper
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
adaptive-paper
Commits
58300e6b
Commit
58300e6b
authored
5 years ago
by
Bas Nijholt
Browse files
Options
Downloads
Patches
Plain Diff
use adaptive-scheduler
parent
8f53026d
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#21639
passed
5 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
phase_diagram.ipynb
+51
-34
51 additions, 34 deletions
phase_diagram.ipynb
with
51 additions
and
34 deletions
phase_diagram.ipynb
+
51
−
34
View file @
58300e6b
...
...
@@ -6,17 +6,10 @@
"metadata": {},
"outputs": [],
"source": [
"%%writefile learners_file.py\n",
"\n",
"import phase_diagram\n",
"import adaptive\n",
"adaptive.notebook_extension()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import phase_diagram as funcs\n",
"\n",
"lead_pars = dict(\n",
" a=10, r1=50, r2=70, coverage_angle=135, angle=45, with_shell=True, which_lead=\"\"\n",
...
...
@@ -43,36 +36,40 @@
" r1=None,\n",
" sigma=None,\n",
" x0=None,\n",
" **
funcs
.constants.__dict__\n",
" **
phase_diagram
.constants.__dict__\n",
")\n",
"\n",
"\n",
"def pf(xy, params=params, lead_pars=lead_pars):\n",
" import phase_diagram
as funcs
\n",
" import phase_diagram \n",
"\n",
" params[\"B_x\"], params[\"mu_lead\"] = xy\n",
" lead =
funcs
.make_lead(**lead_pars).finalized()\n",
" return
funcs
.calculate_pfaffian(lead, params)\n",
" lead =
phase_diagram
.make_lead(**lead_pars).finalized()\n",
" return
phase_diagram
.calculate_pfaffian(lead, params)\n",
"\n",
"\n",
"def smallest_gap(xy, params=params, lead_pars=lead_pars):\n",
" import phase_diagram
as funcs
\n",
" import phase_diagram\n",
"\n",
" params[\"B_x\"], params[\"mu_lead\"] = xy\n",
" lead = funcs.make_lead(**lead_pars).finalized()\n",
" pf = funcs.calculate_pfaffian(lead, params)\n",
" gap = funcs.gap_from_modes(lead, params)\n",
" return pf * gap"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"learner = adaptive.Learner2D(smallest_gap, bounds=[(0, 2), (0, 35)])\n",
"# learner.load('phase_diagram.pickle')"
" lead = phase_diagram.make_lead(**lead_pars).finalized()\n",
" pf = phase_diagram.calculate_pfaffian(lead, params)\n",
" gap = phase_diagram.gap_from_modes(lead, params)\n",
" return pf * gap\n",
"\n",
"fname = 'phase_diagram_gap.pickle'\n",
"f = smallest_gap\n",
"\n",
"# fname = 'phase_diagram.pickle'\n",
"# f = pf\n",
"\n",
"loss = adaptive.learner.learnerND.curvature_loss_function()\n",
"learner = adaptive.LearnerND(smallest_gap, bounds=[(0, 2), (0, 35)], loss_per_simplex=loss)\n",
"\n",
"# learner.load(fname)\n",
"\n",
"learners = [learner]\n",
"fnames = [fname]"
]
},
{
...
...
@@ -81,7 +78,10 @@
"metadata": {},
"outputs": [],
"source": [
"runner = adaptive.Runner(learner, goal=lambda l: l.npoints > 60000)"
"import adaptive\n",
"adaptive.notebook_extension()\n",
"runner = adaptive.Runner(learner, goal=lambda l: l.npoints > 60000)\n",
"runner.live_info()"
]
},
{
...
...
@@ -90,7 +90,8 @@
"metadata": {},
"outputs": [],
"source": [
"runner.live_info()"
"%%output size=100\n",
"learner.plot(tri_alpha=0.4, n=None)"
]
},
{
...
...
@@ -99,8 +100,7 @@
"metadata": {},
"outputs": [],
"source": [
"%%output size=100\n",
"learner.plot(tri_alpha=0.4, n=None)"
"learner.save(fname)"
]
},
{
...
...
@@ -109,7 +109,24 @@
"metadata": {},
"outputs": [],
"source": [
"learner.save('phase_diagram.pickle')"
"import adaptive_scheduler\n",
"\n",
"def goal(learner):\n",
" return learner.npoints > 100_000\n",
"\n",
"scheduler = adaptive_scheduler.scheduler.PBS(\n",
" cores=13*10,\n",
" cores_per_node=10,\n",
") # every learner get this many cores\n",
"\n",
"run_manager = adaptive_scheduler.server_support.RunManager(\n",
" scheduler=scheduler,\n",
" learners_file=\"learners_file.py\",\n",
" goal=goal,\n",
" log_interval=30,\n",
" save_interval=300,\n",
")\n",
"run_manager.start()\n"
]
},
{
...
...
%% Cell type:code id: tags:
```
import adaptive
adaptive.notebook_extension()
```
%%writefile learners_file.py
%% Cell type:code id: tags:
```
import phase_diagram as funcs
import phase_diagram
import adaptive
lead_pars = dict(
a=10, r1=50, r2=70, coverage_angle=135, angle=45, with_shell=True, which_lead=""
)
params = dict(
alpha=20,
B_x=0,
B_y=0,
B_z=0,
Delta=110,
g=50,
orbital=True,
mu_sc=100,
c_tunnel=3 / 4,
V_r=-50,
intrinsic_sc=False,
mu_=lambda x0, sigma, mu_lead, mu_wire: mu_lead,
V_=lambda z, V_0, V_r, V_l, x0, sigma, r1: 0,
V_0=None,
V_l=None,
mu_lead=10,
mu_wire=None,
r1=None,
sigma=None,
x0=None,
**
funcs
.constants.__dict__
**
phase_diagram
.constants.__dict__
)
def pf(xy, params=params, lead_pars=lead_pars):
import phase_diagram
as funcs
import phase_diagram
params["B_x"], params["mu_lead"] = xy
lead =
funcs
.make_lead(**lead_pars).finalized()
return
funcs
.calculate_pfaffian(lead, params)
lead =
phase_diagram
.make_lead(**lead_pars).finalized()
return
phase_diagram
.calculate_pfaffian(lead, params)
def smallest_gap(xy, params=params, lead_pars=lead_pars):
import phase_diagram
as funcs
import phase_diagram
params["B_x"], params["mu_lead"] = xy
lead =
funcs
.make_lead(**lead_pars).finalized()
pf =
funcs
.calculate_pfaffian(lead, params)
gap =
funcs
.gap_from_modes(lead, params)
lead =
phase_diagram
.make_lead(**lead_pars).finalized()
pf =
phase_diagram
.calculate_pfaffian(lead, params)
gap =
phase_diagram
.gap_from_modes(lead, params)
return pf * gap
```
%% Cell type:code id: tags:
fname = 'phase_diagram_gap.pickle'
f = smallest_gap
```
learner = adaptive.Learner2D(smallest_gap, bounds=[(0, 2), (0, 35)])
# learner.load('phase_diagram.pickle')
# fname = 'phase_diagram.pickle'
# f = pf
loss = adaptive.learner.learnerND.curvature_loss_function()
learner = adaptive.LearnerND(smallest_gap, bounds=[(0, 2), (0, 35)], loss_per_simplex=loss)
# learner.load(fname)
learners = [learner]
fnames = [fname]
```
%% Cell type:code id: tags:
```
import adaptive
adaptive.notebook_extension()
runner = adaptive.Runner(learner, goal=lambda l: l.npoints > 60000)
runner.live_info()
```
%% Cell type:code id: tags:
```
runner.live_info()
%%output size=100
learner.plot(tri_alpha=0.4, n=None)
```
%% Cell type:code id: tags:
```
%%output size=100
learner.plot(tri_alpha=0.4, n=None)
learner.save(fname)
```
%% Cell type:code id: tags:
```
learner.save('phase_diagram.pickle')
import adaptive_scheduler
def goal(learner):
return learner.npoints > 100_000
scheduler = adaptive_scheduler.scheduler.PBS(
cores=13*10,
cores_per_node=10,
) # every learner get this many cores
run_manager = adaptive_scheduler.server_support.RunManager(
scheduler=scheduler,
learners_file="learners_file.py",
goal=goal,
log_interval=30,
save_interval=300,
)
run_manager.start()
```
%% Cell type:code id: tags:
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment