Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
adaptive-paper
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Quantum Tinkerer
adaptive-paper
Commits
8e841729
Commit
8e841729
authored
5 years ago
by
Bas Nijholt
Browse files
Options
Downloads
Patches
Plain Diff
start new figure
parent
a1576211
No related branches found
No related tags found
No related merge requests found
Pipeline
#21225
passed
5 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
figures.ipynb
+113
-19
113 additions, 19 deletions
figures.ipynb
with
113 additions
and
19 deletions
figures.ipynb
+
113
−
19
View file @
8e841729
...
...
@@ -57,7 +57,7 @@
"source": [
"np.random.seed(1)\n",
"xs = np.array([0.1, 0.3, 0.35, 0.45])\n",
"f = lambda x: x**3\n",
"f = lambda x: x
**
3\n",
"ys = f(xs)\n",
"means = lambda x: np.convolve(x, np.ones(2) / 2, mode=\"valid\")\n",
"xs_means = means(xs)\n",
...
...
@@ -70,7 +70,7 @@
"ax.annotate(\n",
" s=r\"$L_{1,2} = \\sqrt{\\Delta x^2 + \\Delta y^2}$\",\n",
" xy=(np.mean([xs[0], xs[1]]), np.mean([ys[0], ys[1]])),\n",
" xytext=(xs[0]
+
0.05, ys[0] - 0.05),\n",
" xytext=(xs[0]
+
0.05, ys[0] - 0.05),\n",
" arrowprops=dict(arrowstyle=\"->\"),\n",
" ha=\"center\",\n",
" zorder=10,\n",
...
...
@@ -85,10 +85,12 @@
" arrowprops=dict(arrowstyle=\"->\"),\n",
" ha=\"center\",\n",
" )\n",
"
\n",
"\n",
"ax.scatter(xs, ys, c=\"green\", s=5, zorder=5, label=\"existing data\")\n",
"losses = np.hypot(xs[1:] - xs[:-1], ys[1:] - ys[:-1])\n",
"ax.scatter(xs_means, ys_means, c=\"red\", s=300*losses, zorder=8, label=\"candidate points\")\n",
"ax.scatter(\n",
" xs_means, ys_means, c=\"red\", s=300 * losses, zorder=8, label=\"candidate points\"\n",
")\n",
"xs_dense = np.linspace(xs[0], xs[-1], 400)\n",
"ax.plot(xs_dense, f(xs_dense), alpha=0.3, zorder=7, label=\"function\")\n",
"\n",
...
...
@@ -113,18 +115,26 @@
"source": [
"import adaptive\n",
"\n",
"\n",
"def f(x, offset=0.123):\n",
" a = 0.02\n",
" return x + a**2 / (a**2 + (x - offset)**2)\n",
" return x + a ** 2 / (a ** 2 + (x - offset) ** 2)\n",
"\n",
"\n",
"def g(x):\n",
" return np.tanh(x*40)\n",
" return np.tanh(x * 40)\n",
"\n",
"\n",
"def h(x):\n",
" return np.sin(100*x) * np.exp(-x**2 / 0.1**2)\n",
" return np.sin(100 * x) * np.exp(-x ** 2 / 0.1 ** 2)\n",
"\n",
"\n",
"funcs = [dict(function=f, bounds=(-1, 1), title=\"peak\"), dict(function=g, bounds=(-1, 1), title=\"tanh\"), dict(function=h, bounds=(-0.3, 0.3), title=\"wave packet\")]\n",
"fig, axs = plt.subplots(2, len(funcs), figsize=(fig_width, 1.5*fig_height))\n",
"funcs = [\n",
" dict(function=f, bounds=(-1, 1), title=\"peak\"),\n",
" dict(function=g, bounds=(-1, 1), title=\"tanh\"),\n",
" dict(function=h, bounds=(-0.3, 0.3), title=\"wave packet\"),\n",
"]\n",
"fig, axs = plt.subplots(2, len(funcs), figsize=(fig_width, 1.5 * fig_height))\n",
"n_points = 50\n",
"for i, ax in enumerate(axs.T.flatten()):\n",
" ax.xaxis.set_ticks([])\n",
...
...
@@ -132,24 +142,108 @@
" if i % 2 == 0:\n",
" d = funcs[i // 2]\n",
" # homogeneous\n",
" xs = np.linspace(*d[
'
bounds
'
], n_points)\n",
" ys = d[
'
function
'
](xs)\n",
" xs = np.linspace(*d[
\"
bounds
\"
], n_points)\n",
" ys = d[
\"
function
\"
](xs)\n",
" ax.set_title(rf\"\\textrm{{{d['title']}}}\")\n",
" else:\n",
" d = funcs[(i - 1) // 2]\n",
" loss = adaptive.learner.learner1D.curvature_loss_function()\n",
" learner = adaptive.Learner1D(d['function'], bounds=d['bounds'], loss_per_interval=loss)\n",
" learner = adaptive.Learner1D(\n",
" d[\"function\"], bounds=d[\"bounds\"], loss_per_interval=loss\n",
" )\n",
" adaptive.runner.simple(learner, goal=lambda l: l.npoints >= n_points)\n",
" # adaptive\n",
" xs, ys = zip(*sorted(learner.data.items()))\n",
" xs_dense = np.linspace(*d['bounds'], 1000)\n",
" ax.plot(xs_dense, d['function'](xs_dense), c='red', alpha=0.3, lw=0.5)\n",
" ax.scatter(xs, ys, s=0.5, c='k')\n",
" \n",
"axs[0][0].set_ylabel(r'$\\textrm{homogeneous}$')\n",
"axs[1][0].set_ylabel(r'$\\textrm{adaptive}$')\n",
"plt.savefig(\"figures/adaptive_vs_grid.pdf\", bbox_inches=\"tight\", transparent=True)\n"
" xs_dense = np.linspace(*d[\"bounds\"], 1000)\n",
" ax.plot(xs_dense, d[\"function\"](xs_dense), c=\"red\", alpha=0.3, lw=0.5)\n",
" ax.scatter(xs, ys, s=0.5, c=\"k\")\n",
"\n",
"axs[0][0].set_ylabel(r\"$\\textrm{homogeneous}$\")\n",
"axs[1][0].set_ylabel(r\"$\\textrm{adaptive}$\")\n",
"plt.savefig(\"figures/adaptive_vs_grid.pdf\", bbox_inches=\"tight\", transparent=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Fig 3. "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import itertools\n",
"import adaptive\n",
"import holoviews.plotting.mpl\n",
"import matplotlib.tri as mtri\n",
"\n",
"\n",
"def f(xy, offset=0.123):\n",
" a = 0.1\n",
" x, y = xy\n",
" return x * y + a ** 2 / (a ** 2 + (x - offset) ** 2 + (y - offset) ** 2)\n",
"\n",
"\n",
"def g(xy):\n",
" x, y = xy\n",
" return np.tanh(x * 40) * np.tanh(y * 40)\n",
"\n",
"\n",
"def h(xy):\n",
" x, y = xy\n",
" return np.sin(100 * x * y) * np.exp(-x ** 2 / 0.1 ** 2 - y ** 2 / 0.4 ** 2)\n",
"\n",
"\n",
"funcs = [\n",
" dict(function=f, bounds=[(-1, 1), (-1, 1)], title=\"peak\"),\n",
" dict(function=g, bounds=[(-1, 1), (-1, 1)], title=\"tanh\"),\n",
" dict(function=h, bounds=[(-0.3, 0.3), (-0.3, 0.3)], title=\"wave packet\"),\n",
"]\n",
"fig, axs = plt.subplots(2, len(funcs), figsize=(fig_width, 1.5 * fig_height))\n",
"\n",
"plt.subplots_adjust(hspace=-0.1, wspace=0.1)\n",
"n_points = 50\n",
"for i, ax in enumerate(axs.T.flatten()):\n",
" ax.xaxis.set_ticks([])\n",
" ax.yaxis.set_ticks([])\n",
" if i % 2 == 0:\n",
" d = funcs[i // 2]\n",
" # homogeneous\n",
" ax.set_title(rf\"\\textrm{{{d['title']}}}\")\n",
" x, y = d[\"bounds\"]\n",
" xs = np.linspace(*x, n_points)\n",
" ys = np.linspace(*y, n_points)\n",
" data = {xy: d[\"function\"](xy) for xy in itertools.product(xs, ys)}\n",
" learner = adaptive.Learner2D(d[\"function\"], bounds=d[\"bounds\"])\n",
" learner.data = data\n",
" else:\n",
" # adaptive\n",
" d = funcs[(i - 1) // 2]\n",
" learner = adaptive.Learner2D(d[\"function\"], bounds=d[\"bounds\"])\n",
" adaptive.runner.simple(learner, goal=lambda l: l.npoints >= n_points ** 2)\n",
" tri = learner.ip().tri\n",
" triang = mtri.Triangulation(*tri.points.T, triangles=tri.vertices)\n",
" # ax.triplot(triang, c=\"w\", lw=0.2, alpha=0.8)\n",
" values = np.array(list(learner.data.values()))\n",
" ax.imshow(learner.plot().Image.I.data, extent=(-0.5, 0.5, -0.5, 0.5))\n",
" ax.set_xticks([])\n",
" ax.set_yticks([])\n",
"\n",
"axs[0][0].set_ylabel(r\"$\\textrm{homogeneous}$\")\n",
"axs[1][0].set_ylabel(r\"$\\textrm{adaptive}$\")\n",
"plt.savefig(\"figures/adaptive_2D.pdf\", bbox_inches=\"tight\", transparent=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
...
...
%% Cell type:code id: tags:
```
import numpy as np
import matplotlib
matplotlib.use("agg")
import matplotlib.pyplot as plt
%matplotlib inline
%config InlineBackend.figure_format = 'svg'
golden_mean = (np.sqrt(5) - 1) / 2 # Aesthetic ratio
fig_width_pt = 246.0 # Columnwidth
inches_per_pt = 1 / 72.27 # Convert pt to inches
fig_width = fig_width_pt * inches_per_pt
fig_height = fig_width * golden_mean # height in inches
fig_size = [fig_width, fig_height]
params = {
"backend": "ps",
"axes.labelsize": 13,
"font.size": 13,
"legend.fontsize": 10,
"xtick.labelsize": 10,
"ytick.labelsize": 10,
"text.usetex": True,
"figure.figsize": fig_size,
"font.family": "serif",
"font.serif": "Computer Modern Roman",
"legend.frameon": True,
"savefig.dpi": 300,
}
plt.rcParams.update(params)
plt.rc("text.latex", preamble=[r"\usepackage{xfrac}", r"\usepackage{siunitx}"])
```
%% Cell type:markdown id: tags:
# Fig 1.
%% Cell type:code id: tags:
```
np.random.seed(1)
xs = np.array([0.1, 0.3, 0.35, 0.45])
f = lambda x: x**3
f = lambda x: x
**
3
ys = f(xs)
means = lambda x: np.convolve(x, np.ones(2) / 2, mode="valid")
xs_means = means(xs)
ys_means = means(ys)
fig, ax = plt.subplots(figsize=fig_size)
ax.scatter(xs, ys, c="k")
ax.plot(xs, ys, c="k")
# ax.scatter()
ax.annotate(
s=r"$L_{1,2} = \sqrt{\Delta x^2 + \Delta y^2}$",
xy=(np.mean([xs[0], xs[1]]), np.mean([ys[0], ys[1]])),
xytext=(xs[0]
+
0.05, ys[0] - 0.05),
xytext=(xs[0]
+
0.05, ys[0] - 0.05),
arrowprops=dict(arrowstyle="->"),
ha="center",
zorder=10,
)
for i, (x, y) in enumerate(zip(xs, ys)):
sign = [1, -1][i % 2]
ax.annotate(
s=fr"$x_{i+1}, y_{i+1}$",
xy=(x, y),
xytext=(x + 0.01, y + sign * 0.04),
arrowprops=dict(arrowstyle="->"),
ha="center",
)
ax.scatter(xs, ys, c="green", s=5, zorder=5, label="existing data")
losses = np.hypot(xs[1:] - xs[:-1], ys[1:] - ys[:-1])
ax.scatter(xs_means, ys_means, c="red", s=300*losses, zorder=8, label="candidate points")
ax.scatter(
xs_means, ys_means, c="red", s=300 * losses, zorder=8, label="candidate points"
)
xs_dense = np.linspace(xs[0], xs[-1], 400)
ax.plot(xs_dense, f(xs_dense), alpha=0.3, zorder=7, label="function")
ax.legend()
ax.axis("off")
plt.savefig("figures/loss_1D.pdf", bbox_inches="tight", transparent=True)
plt.show()
```
%% Cell type:markdown id: tags:
# Fig 2.
%% Cell type:code id: tags:
```
import adaptive
def f(x, offset=0.123):
a = 0.02
return x + a**2 / (a**2 + (x - offset)**2)
return x + a ** 2 / (a ** 2 + (x - offset) ** 2)
def g(x):
return np.tanh(x*40)
return np.tanh(x * 40)
def h(x):
return np.sin(100*x) * np.exp(-x**2 / 0.1**2)
return np.sin(100 * x) * np.exp(-x ** 2 / 0.1 ** 2)
funcs = [dict(function=f, bounds=(-1, 1), title="peak"), dict(function=g, bounds=(-1, 1), title="tanh"), dict(function=h, bounds=(-0.3, 0.3), title="wave packet")]
fig, axs = plt.subplots(2, len(funcs), figsize=(fig_width, 1.5*fig_height))
funcs = [
dict(function=f, bounds=(-1, 1), title="peak"),
dict(function=g, bounds=(-1, 1), title="tanh"),
dict(function=h, bounds=(-0.3, 0.3), title="wave packet"),
]
fig, axs = plt.subplots(2, len(funcs), figsize=(fig_width, 1.5 * fig_height))
n_points = 50
for i, ax in enumerate(axs.T.flatten()):
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
if i % 2 == 0:
d = funcs[i // 2]
# homogeneous
xs = np.linspace(*d[
'
bounds
'
], n_points)
ys = d[
'
function
'
](xs)
xs = np.linspace(*d[
"
bounds
"
], n_points)
ys = d[
"
function
"
](xs)
ax.set_title(rf"\textrm{{{d['title']}}}")
else:
d = funcs[(i - 1) // 2]
loss = adaptive.learner.learner1D.curvature_loss_function()
learner = adaptive.Learner1D(d['function'], bounds=d['bounds'], loss_per_interval=loss)
learner = adaptive.Learner1D(
d["function"], bounds=d["bounds"], loss_per_interval=loss
)
adaptive.runner.simple(learner, goal=lambda l: l.npoints >= n_points)
# adaptive
xs, ys = zip(*sorted(learner.data.items()))
xs_dense = np.linspace(*d[
'
bounds
'
], 1000)
ax.plot(xs_dense, d[
'
function
'
](xs_dense), c=
'
red
'
, alpha=0.3, lw=0.5)
ax.scatter(xs, ys, s=0.5, c=
'k'
)
xs_dense = np.linspace(*d[
"
bounds
"
], 1000)
ax.plot(xs_dense, d[
"
function
"
](xs_dense), c=
"
red
"
, alpha=0.3, lw=0.5)
ax.scatter(xs, ys, s=0.5, c=
"k"
)
axs[0][0].set_ylabel(r
'
$\textrm{homogeneous}$
'
)
axs[1][0].set_ylabel(r
'
$\textrm{adaptive}$
'
)
axs[0][0].set_ylabel(r
"
$\textrm{homogeneous}$
"
)
axs[1][0].set_ylabel(r
"
$\textrm{adaptive}$
"
)
plt.savefig("figures/adaptive_vs_grid.pdf", bbox_inches="tight", transparent=True)
```
%% Cell type:markdown id: tags:
# Fig 3.
%% Cell type:code id: tags:
```
import itertools
import adaptive
import holoviews.plotting.mpl
import matplotlib.tri as mtri
def f(xy, offset=0.123):
a = 0.1
x, y = xy
return x * y + a ** 2 / (a ** 2 + (x - offset) ** 2 + (y - offset) ** 2)
def g(xy):
x, y = xy
return np.tanh(x * 40) * np.tanh(y * 40)
def h(xy):
x, y = xy
return np.sin(100 * x * y) * np.exp(-x ** 2 / 0.1 ** 2 - y ** 2 / 0.4 ** 2)
funcs = [
dict(function=f, bounds=[(-1, 1), (-1, 1)], title="peak"),
dict(function=g, bounds=[(-1, 1), (-1, 1)], title="tanh"),
dict(function=h, bounds=[(-0.3, 0.3), (-0.3, 0.3)], title="wave packet"),
]
fig, axs = plt.subplots(2, len(funcs), figsize=(fig_width, 1.5 * fig_height))
plt.subplots_adjust(hspace=-0.1, wspace=0.1)
n_points = 50
for i, ax in enumerate(axs.T.flatten()):
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
if i % 2 == 0:
d = funcs[i // 2]
# homogeneous
ax.set_title(rf"\textrm{{{d['title']}}}")
x, y = d["bounds"]
xs = np.linspace(*x, n_points)
ys = np.linspace(*y, n_points)
data = {xy: d["function"](xy) for xy in itertools.product(xs, ys)}
learner = adaptive.Learner2D(d["function"], bounds=d["bounds"])
learner.data = data
else:
# adaptive
d = funcs[(i - 1) // 2]
learner = adaptive.Learner2D(d["function"], bounds=d["bounds"])
adaptive.runner.simple(learner, goal=lambda l: l.npoints >= n_points ** 2)
tri = learner.ip().tri
triang = mtri.Triangulation(*tri.points.T, triangles=tri.vertices)
# ax.triplot(triang, c="w", lw=0.2, alpha=0.8)
values = np.array(list(learner.data.values()))
ax.imshow(learner.plot().Image.I.data, extent=(-0.5, 0.5, -0.5, 0.5))
ax.set_xticks([])
ax.set_yticks([])
axs[0][0].set_ylabel(r"$\textrm{homogeneous}$")
axs[1][0].set_ylabel(r"$\textrm{adaptive}$")
plt.savefig("figures/adaptive_2D.pdf", bbox_inches="tight", transparent=True)
```
%% Cell type:code id: tags:
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment