-
Anton Akhmerov authoredAnton Akhmerov authored
Lecture 2 – Free electron model
Based on chapters 3 and 4 of the book
In this lecture we will:
- consider electrons as charged point particles travelling through a solid
- discuss Drude theory
- discuss the Hall experiment
- discuss specific heat of a solid based due to electrons
- introduce mobility, Hall resistance and the Fermi energy
Drude theory
Ohm's law states that V=IR=I\rho\frac{l}{A}. In this lecture we will investigate where this law comes from. We will use the theory developed by Paul Drude in 1900, which is based on three assumptions:
- Electrons have an average scattering time \tau.
- At each scattering event an electron returns to momentum {\bf p}=0.
- In-between scattering events electrons respond to the Lorentz force {\bf F}_{\rm L}=-e\left({\bf E}+{\bf v}\times{\bf B}\right).
For now we will consider only an electric field (i.e. {\bf B}=0). What velocity do electrons acquire in-between collisions?
{\bf v}=-\int_0^\tau\frac{e{\bf E}}{m_{\rm e}}{\rm d}t=-\frac{e\tau}{m_{\rm e}}{\bf E}=-\mu{\bf E}
Here we have defined the quantity \mu\equiv e\tau/m_{\rm e}, which is the mobility. If we have a density n of electrons in our solid, the current density {\bf j} [A/m^2] then becomes:
{\bf j}=-en{\bf v}=\frac{n e^2\tau}{m_{\rm e}}{\bf E}=\sigma{\bf E}\ ,\ \ \sigma=\frac{ne^2\tau}{m_{\rm e}}=ne\mu
\sigma is the conductivity, which is the inverse of resistivity: \rho=\frac{1}{\sigma}. If we now take j=\frac{I}{A} and E=\frac{V}{l}, we retrieve Ohm's Law: \frac{I}{A}=\frac{V}{\rho l}.
Scattering is caused by collisions with:
- Phonons: \tau_{\rm ph}(T) (\tau_{\rm ph}\rightarrow\infty as T\rightarrow 0)
- Impurities/vacancies: \tau_0
Scattering rate \frac{1}{\tau}:
\frac{1}{\tau}=\frac{1}{\tau_{\rm ph}(T)}+\frac{1}{\tau_0}\ \Rightarrow\ \rho=\frac{1}{\sigma}=\frac{m}{ne^2}\left( \frac{1}{\tau_{\rm ph}(T)}+\frac{1}{\tau_0} \right)\equiv \rho_{\rm ph}(T)+\rho_0
Matthiessen's Rule (1864). Solid (dashed) curve: \rho(T) for a pure (impure) crystal.
How fast do electrons travel through a copper wire? Let's take E = 1 volt/m, \tau ~ 25 fs (Cu, T= 300 K).
\rightarrow v=\mu E=\frac{e\tau}{m_{\rm e}}E=\frac{10^{-19}\times 2.5\times 10^{-14}}{10^{-30}}=2.5\times10^{-3}=2.5 mm/s ! (= 50 \mum @ 50 Hz AC)
Hall effect
Consider a conductive wire in a magnetic field {\bf B} \rightarrow electrons are deflected in a direction perpendicular to {\bf B} and {\bf j}.
{\bf E}_{\rm H} = Hall voltage, caused by the Lorentz force.
In equilibrium, assuming that the average velocity becomes zero after every collision: \frac{mv_x}{\tau}=-eE
The y-component of the Lorentz force -e{\bf v}_x\times{\bf B} is being compensated by the Hall voltage {\bf E}_{\rm H}={\bf v}_x\times{\bf B}=\frac{1}{ne}{\bf j}\times{\bf B}. The total electric field then becomes
{\bf E}=\left(\frac{1}{ne}{\bf j}\times{\bf B}+\frac{m}{ne^2\tau}{\bf j}\right)
We now introduce the resistivity matrix \tilde{\rho} as {\bf E}=\tilde{\rho}{\bf j}, where the diagonal elements are simply \rho_{xx}=\rho_{yy}=\rho_{zz}=\frac{m}{ne^2\tau}. The off-diagonal element \rho_{xy} gives us:
\rho_{xy}=\frac{B}{ne}\equiv -R_{\rm H}B
where R_{\rm H}=-\frac{1}{ne} is the Hall resistance. So by measuring the Hall resistance, we can obtain n, the density of free electrons in a material.
While most materials have R_{\rm H}>0, interestingly some materials are found to have R_{\rm H}<0. This would imply that the charge carriers either have a positive charge, or a negative mass. We will see later (chapter 17) how to interpret this.
Sommerfeld theory (free electron model)
Atoms in a metal provide conduction electrons from their outer shells (often s-shells). These can be described as waves in the crystal, analogous to phonons. Hamiltonian of a free electron:
\mathcal{H}=\frac{ {\bf p}^2}{2m}=-\frac{\hbar^2}{2m}\left( \frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}+\frac{\partial^2}{\partial z^2} \right)\ \Rightarrow\ \varepsilon=\frac{\hbar^2}{2m}\left( k_x^2+k_y^2+k_z^2 \right)
Take periodic boundary conditions: \psi(x,y,z)=\psi(x+l,y+L,z+L):
k_x=\frac{2\pi p}{L},\ k_y=\frac{2\pi q}{L},\ k_z=\frac{2\pi r}{L}\ \Rightarrow\ \varepsilon=\frac{2\pi^2\hbar^2}{mL^2}\left( p^2+q^2+r^2 \right)
Comparable to phonons, but: electrons are fermions.
- Only 2 (due to spin) allowed per k-value
- Fill up from the lowest energy until you run out of electrons
\rightarrow Calculate when you are out of electrons \rightarrow Fermi energy.
In order to compute the density of states, we need to perform an integration of k-space. Assuming three dimensions and spherical symmetry (the dispersion in the free electron model is isotropic) we find for the total number of states:
N=2\left(\frac{L}{2\pi}\right)^3\int{\rm d}{\bf k}=2 \left(\frac{L}{2\pi}\right)^34\pi\int k^2{\rm d}k=\frac{V}{\pi^2}\int k^2{\rm d}k ,
where the factor 2 represents spin degeneracy. Using k=\frac{\sqrt{2m\varepsilon}}{\hbar} and {\rm d}k=\frac{1}{\hbar}\sqrt{\frac{m}{2\varepsilon}}{\rm d}\varepsilon we can rewrite this as:
N=\frac{V}{\pi^2}\int\frac{2m\varepsilon}{\hbar^3}\sqrt{\frac{m}{2\varepsilon}}{\rm d}\varepsilon=\frac{Vm^{3/2}}{\pi^2\hbar^3}\int\sqrt{2\varepsilon}\ {\rm d}\varepsilon
So we find for the density of states:
g(\varepsilon)=\frac{ {\rm d}N}{ {\rm d}\varepsilon}=\frac{Vm^{3/2}\sqrt{2\varepsilon}}{\pi^2\hbar^3}\propto\sqrt{\varepsilon}
Similarly,
- For 1D: g(\varepsilon) = \frac{2 V}{\pi} \frac{ {\rm d}k}{ {\rm d}\varepsilon} \propto 1/\sqrt{\varepsilon}
- For 2D: g(\varepsilon) = \frac{k V}{\pi} \frac{ {\rm d}k}{ {\rm d}\varepsilon} \propto \text{constant}
Total number of electrons:
N=\int_0^{\varepsilon_{\rm F}}g(\varepsilon){\rm d}\varepsilon,
with \varepsilon_{\rm F} the Fermi energy = highest filled energy at T=0.
\varepsilon_{\rm F}=\frac{\hbar^2}{2m}\left( 3\pi^2\frac{N}{V} \right)^{2/3}\equiv \frac{\hbar^2 k_{\rm F}^2}{2m},\ k_{\rm F}=\left( 3\pi^2\frac{N}{V} \right)^{1/3}
The quantity k_{\rm F}=\frac{2\pi}{\lambda_{\rm F}} is called the Fermi wavevector, where \lambda_{\rm F} is the Fermi wavelength, which is typically in the order of the atomic spacing.
For copper, the Fermi energy is ~7 eV \rightarrow thermal energy of the electrons ~70 000 K ! The Fermi velocity v_{\rm F}=\frac{\hbar k_{\rm F}}{m}\approx 1750 km/s \rightarrow electrons run with a significant fraction of the speed of light, only because lower energy states are already filled by other electrons.
The total number of electrons can be expressed as N=\frac{2}{3}\varepsilon_{\rm F}g(\varepsilon_{\rm F}).
The bold line represents all filled states at T=0. This is called the Fermi sea. Conduction takes place only at the Fermi surface: everything below \varepsilon_{\rm F}-\frac{eV}{2} is compensated.
Now: Finite temperature \rightarrow probability distribution to occupy certain states.
Fermi-Dirac distribution:
f(\varepsilon,T)=\frac{1}{ {\rm e}^{(\varepsilon-\mu)/k_{\rm B}T}+1}
Chemical potential \mu=\varepsilon_{\rm F} if T=0. Typically \varepsilon_{\rm F}/k_{\rm B}~70 000 K (~7 eV), whereas room temperature is only 300 K (~30 meV) \rightarrow thermal smearing occurs only very close to Fermi surface.
At finite temperature, the total number of electrons N should be:
N=\int_0^\infty f(\varepsilon,T)g(\varepsilon){\rm d}\varepsilon=\int_0^\infty n(\varepsilon,T){\rm d}\varepsilon
We can use this to calculate the electronic contribution to the heat capacity.
Electrons in the top triangle are being excited to the bottom triangle due to temperature increase. Number of excited electrons \approx\frac{1}{2}g(\varepsilon_{\rm F})k_{\rm B}T=n_{\rm exc}. Total extra energy E(T)-E(0)=n_{\rm exc}k_{\rm B}T=\frac{1}{2}g(\varepsilon_{\rm F})k_{\rm B}^2T^2.
C_{V,e}=\frac{ {\rm d}E}{ {\rm d}T}=g(\varepsilon_{\rm F})k_{\rm B}^2T=\ ...\ =\frac{3}{2}Nk_{\rm B}\frac{T}{T_{\rm F}}\propto T
T_{\rm F}=\frac{\varepsilon_{\rm F}}{k_{\rm B}} is the Fermi temperature.
How does C_{V,e} relate to the phonon contribution C_{V,p}?
- At room temperature, C_{V,p}=3Nk_{\rm B}\gg C_{V,e}
- Near T=0, C_{V,p}\propto T^3 and C_{V,e}\propto T \rightarrow competition.
New concept: Fermi surface = all points in k-space with \varepsilon=\varepsilon_{\rm F}. For free electrons, the Fermi surface is a sphere.
N=2\frac{\frac{4}{3}\pi k_{\rm F}^3}{\left( \frac{2\pi}{L} \right)^3}=\frac{k_{\rm F}^3V}{3\pi^2}\ \Rightarrow\ k_{\rm F}=\left( 3\pi^2\frac{N}{V} \right)^{1/3}
The orange circle represents the Fermi surface at finite current \rightarrow this circle will shift only slightly before the electrons reach terminal velocity \rightarrow all transport takes place near the Fermi surface.
C_V
Useful trick: scaling ofBehavior of C_V can be very quickly memorized or understood using the following mnemonic rule
Particles with energy E \leq kT are thermally excited, and each carries extra energy kT.
Example 1: electrons
g(E_F) roughly constant ⇒ total energy in the thermal state is T \times [T\times g(E_F)] ⇒ C_V \propto T.
E_F=0 (midterm 2018)
Example 2: graphene withg(E) \propto E ⇒ total energy is T \times T^2 ⇒ C_V \propto T^2.
Example 3: phonons in 3D at low temperatures.
g(E) \propto E^2 ⇒ total energy is T \times T^3 ⇒ C_V \propto T^3.