Skip to content
Snippets Groups Projects

Solutions for exercises lecture 4: Sommerfeld model

Warm-up questions

  1. See lecture notes

E=0g(ε)nF(β(εμ))εdε E = \int \limits_0^{\infty} g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \varepsilon \mathrm{d} \varepsilon

  1. The electronic heat capacity

    CeC_e
    approaches
    3NkB3N k_B
    .

  2. Thermal smearing is too significant and we can not accurately approximate the fraction of the excited electron with triangles anymore. Thus the Sommerfeld expansion breaks down.

  3. Electrons.

Exercise 1: potassium

  1. Alkali metals mostly have a spherical Fermi surface. Their energy depends only on the magnitude of the Fermi wavevector.

  2. Refer to the lecture notes.

  3. Electrons are fermions and obeys pauli exclusion principle. As electrons cannot occupy the same state, they are forced to occupy higher energy states resulting in high Fermi energy and high Fermi temperature.

n=NV=13π23(2mεF)3/2 n = \frac{N}{V} = \frac{1}{3 \pi^{2} \hbar^{3}}\left(2 m \varepsilon_{F}\right)^{3 / 2}

n=ρNAZM, n = \frac{\rho N_A Z}{M},
where
ρ\rho
is the density,
NAN_A
is the Avogadro's constant,
MM
is molar mass and
ZZ
is the valence of potassium atom. Comparing total and free electron density, only few electrons are available for conduction which is roughly 1 free electron per potassium atom.

Exercise 2: the n-dimensional free electron model

  1. Distance between nearest k-points is

    2πL\frac{2\pi}{L}
    and their density across n-dimensions is
    (L2π)n(\frac{L}{2\pi})^n
    .

g1D(k)dk=(L2π)2dk g_{1D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right) 2 \mathrm{d} k
The factor 2 is due to positive and negative
kk
-values having equal enery
g2D(k)dk=(L2π)22πkdk g_{2D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right)^2 2\pi k \mathrm{d} k
g3D(k)dk=(L2π)34πk2dk g_{3D}(k)\textrm{d} k = \left(\frac{L}{2\pi}\right)^3 4\pi k^2 \mathrm{d} k

g(k)dk=(L2π)nSn1(k)dk=(L2π)n2πn2kn1Γ(n2)dk \begin{align} g(k)\textrm{d} k &= \left(\frac{L}{2\pi}\right)^n S_{n-1}(k)\textrm{d} k \\ &= \left(\frac{L}{2\pi}\right)^n \frac{2\pi^{\frac{n}{2}}k^{n-1}}{\Gamma(\frac{n}{2})}\textrm{d} k \end{align}

  1. See hint of the question

g(ε)dε=2sg(k)dk g(\varepsilon)\textrm{d} \varepsilon = 2_s g(k) \textrm{d} k
g(ε)=2sg(k(ε))dkdε g(\varepsilon)=2_sg(k(\varepsilon))\frac{\textrm{d} k}{\textrm{d} \varepsilon}
g(ε)=2sΓ(n2)(Lm2π)n(ε)n21 g(\varepsilon) = \frac{2_s}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n (\varepsilon)^{\frac{n}{2}-1}

N=0g(ε)nF(β(εμ))dε=2Γ(n2)(Lm2π)n0(ε)n21eεμkBT+1dε N = \int_{0}^{\infty}g(\varepsilon)n_F(\beta(\varepsilon-\mu))\textrm{d} \varepsilon = \frac{2}{\Gamma(\frac{n}{2})}\left(\frac{L}{\hbar}\sqrt{\frac{m}{2\pi}}\right)^n\int_{0}^{\infty}\frac{(\varepsilon)^{\frac{n}{2}-1}}{e^{\frac{\varepsilon-\mu}{k_BT}}+1}\textrm{d} \varepsilon

Total energy: $E = \int_{0}^{\infty} g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \varepsilon \textrm{d} \varepsilon $

Exercise 3: a hypothetical material

E=0εg(ε)nF(β(εμ))dε=2.1010eV320ε32eε5.2kBT+1dε E = \int_{0}^{\infty}\varepsilon g(\varepsilon) n_{F}(\beta (\varepsilon - \mu)) \textrm{d} \varepsilon = 2.10^{10}eV^{-\frac{3}{2}} \int_{0}^{\infty}\frac{\varepsilon^{\frac{3}{2}}}{e^\frac{\varepsilon-5.2}{k_BT}+1} \textrm{d} \varepsilon

E=45(5.2)521010eV E = \frac{4}{5} (5.2)^{\frac{5}{2}} 10^{10} eV

E(T)E(T=0)=π26(kBT)2ε(εg(ε))ε=εF8.356108eV \begin{align} E(T)-E(T=0) &= \frac{\pi^2}{6}(k_B T)^2\frac{\partial}{\partial \varepsilon}\left(\varepsilon g(\varepsilon)\right)\bigg|_{\varepsilon=\varepsilon _F}\\ &\approx 8.356 10^8 eV \end{align}

Cv=1.6713.106eV/KC_v = 1.6713.10^6 eV/K

4, 6.

mu = 5.2
kB = 8.617343e-5
T = 1000 #kelvin

import numpy as np
from scipy import integrate

np.seterr(over='ignore')

# Fermi-Dirac distribution 
def f(E, T):
    return 1 / (np.exp((E - mu)/(kB*T)) + 1)

# Density of states
def g(E):
    return 2e10 * np.sqrt(E)

#integration function
def integral(E, T):
    return f(E, T)*g(E)*E

## Solve integral numerically using scipy's integrate
dE = integrate.quad(integral, 0, 1e1, args=(T))[0] - 0.8e10 * 5.2**(5./2)

dT = 0.001
dEplus = integrate.quad(integral, 0, 1e1, args=(T+dT))[0] - 0.8e10 * 5.2**(5./2)
dEmin = integrate.quad(integral, 0, 1e1, args=(T-dT))[0] - 0.8e10 * 5.2**(5./2)

CV = (dEplus - dEmin) / (2*dT);

print(f'dE = {dE:.4e} eV')
print(f'Cv = {CV:.4e} eV/K')

Check the source code written in python for solving integral using midpoint rule.

Exercise 4: graphene

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(-1, 1, 100)
fig, ax = plt.subplots(figsize=(7, 5))
ax.plot(x, x, 'b')
ax.plot(x,-x, 'b')

ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position(('data', 0.0))

# Eliminate upper and right axes
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')

ax.set_xticks([])
ax.set_yticks([])

ax.set_xlabel(r'$\mid \vec k \mid$', fontsize=14)
ax.set_ylabel(r'$\varepsilon$', fontsize=18, rotation='horizontal')
ax.yaxis.set_label_coords(0.5,1)
ax.xaxis.set_label_coords(1.0, 0.49)

2.The DOS for the positive energies is given by

g(ε)=2s2v2π(L2π)2εc2, g(\varepsilon) = 2_s 2_v 2 \pi \left(\frac{L}{2 \pi}\right)^2 \frac{\varepsilon}{c^2},
where
2s2_s
is the spin degeneracy and
2v2_v
is the valley degeneracy. If we account for the negative energies as well, we obtain
g(ε)=2s2v2π(L2π)2εc2. g(\varepsilon) = 2_s 2_v 2 \pi \left(\frac{L}{2 \pi}\right)^2 \frac{|\varepsilon|}{c^2}.

3.

g(ε)g(\varepsilon)
vs
ε\varepsilon
is a linear plot. Here, the region marked by
kBT-k_B T
is a triangle whose area gives the number of electrons that can be excited:
nex=12g(kBT)kBT=L2kB2T2πc2. \begin{align} n_{ex} &= \frac{1}{2} g(-k_B T) k_B T\\ &= \frac{L^2 k_B^2T^2}{\pi c^2}. \end{align}
From this it follows that the energy difference is given by
E(T)E0=L2kB3T3πc2. E(T) - E_0 = \frac{L^2 k_B^3T^3}{\pi c^2}.

Cv(T)=ET=3L2kB3T2πc2 C_v(T) = \frac{\partial E}{\partial T} = \frac{3L^2k_B^3T^2}{\pi c^2}