We assume that in $d$ dimensions there are $d$ polarizations.
For 1D we have that $N = \frac{L}{2\pi}\int dk$, hence $g(\omega) = \frac{L}{2\pi v}$.
For 2D we have that $N = 2\left(\frac{L}{2\pi}\right)^2\int d^2k = 2\left(\frac{L}{2\pi}\right)^2\int 2\pi kdk$, hence $g(\omega) = \frac{L^2\omega}{\pi v^2}$.
For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{L}{2\pi}\right)^3\int 4\pi kdk$, hence $g(\omega) = \frac{3L^3\omega^2}{2\pi^2v^3}$.
### Exercise 2: Debye model in 2D.
1.
Look at the lecture notes.
2.
$$
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant}.
$$
3.
High temperature implies $\beta \rightarrow 0$, hence $E = \frac{L^2}{\pi v^2\hbar^2\beta^3}\frac{(\beta\hbar\omega_D)^2}{2} + T \text{ independent constant}$, and then $C = \frac{k_BL^2\omega^2_D}{2\pi v^2} = 2Nk_B$. We've used the value for $\omega_D$ calculated from $2N = \int_{0}^{\omega_D}g(\omega)d\omega$.
4.
In the low temperature limit we have that $\beta \rightarrow \infty$, hence $E \approx \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant} = \frac{2\zeta(3)L^2}{\pi v^2\hbar^2\beta^3} + T \text{ independent constant}$. Finally $C = \frac{6\zeta(3)k^3_BL^2}{\pi v^2\hbar^2}T^2$. We used the fact that $\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx = 2\zeta(3)$ where $\zeta$ is the Riemann zeta function.
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + T \text{ independent constant}.
$$
2.
Note that we can get $\omega_D$ from $3N = \int_{0}^{\omega_D}g(\omega)$ so everything cancels as usual and we are left with the Dulong-Petit law $C = 3Nk_B$.
3.
In the low temperature limit we have that $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
### Exercise 4: Anisotropic sound velocities.
$$
E = 3\left(\frac{L}{2\pi}\right)^3\int d^3k\hbar\omega(\mathbf{k})\left(n_B(\beta\hbar\omega(\mathbf{k})) + \frac{1}{2}\right) = 3\left(\frac{L}{2\pi}\right)^3\frac{1}{v_xv_yv_z}\int d^3\kappa\frac{\hbar\kappa}{e^{\beta\hbar\kappa} - 1} + T \text{ independent part},
$$
where we used the substitutions $\kappa_x = k_xv_x,\kappa_y = k_yv_y, \kappa_z = k_zv_z$. Finally
$$
E = \frac{3\hbar L^3}{2\pi^2}\frac{1}{v_xv_yv_z}\int_0^{\kappa_D} d\kappa\frac{\kappa^3}{e^{\beta\hbar\kappa} - 1} + T \text{ independent part} = \frac{3L^3}{2\pi^2\hbar^3\beta^4}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1} + T \text{ independent part},
$$
hence $C = \frac{\partial E}{\partial T} = \frac{6k_B^4L^3T^3}{\pi^2\hbar^3}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1}$. We see that the result is similar to the one with the linear dispersion, the only difference is the factor $1/v_xv_yv_y$ instead of $1/v^3$.