Skip to content
Snippets Groups Projects
Commit 1200b490 authored by Radoica Draškić's avatar Radoica Draškić
Browse files

Correct the solution to excercise 3.

parent e577de83
No related branches found
No related tags found
1 merge request!51Update src/solutions/1_einstein_model.md, mkdocs.yml files
Pipeline #27726 passed
---
jupyter:
jupytext:
text_representation:
extension: .md
format_name: markdown
format_version: '1.0'
jupytext_version: 1.0.2
---
# Solutions for lecture 1 exercises
### Exercise 1: Heat capacity of a classical oscillator.
......@@ -84,12 +74,12 @@ Use the formula $\omega = \sqrt{\frac{k}{m}}$.
2.
$E = \frac{N_{^6Li}}{N}\hbar\omega_{^6Li}(2 + 1/2)+\frac{N_{^7Li}}{N}\hbar\omega_{^7Li}(4 + 1/2)$.
$E = N_{^6Li}\hbar\omega_{^6Li}(2 + 1/2)+N_{^7Li}\hbar\omega_{^7Li}(4 + 1/2)$.
3.
$E = \hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + \hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right)$.
$E = N_{^6Li}\hbar\omega_{^6Li}\left(n_B(\beta\hbar\omega_{^6Li}) + \frac{1}{2}\right) + N_{^7Li}\hbar\omega_{^7Li}\left(n_B(\beta\hbar\omega_{^7Li}) + \frac{1}{2}\right)$.
4.
$C = C_{^6Li} + C_{^7Li}$ where the heat capacities are calculated with the formula from Excercise 2.4.
$C = \frac{N_{^6Li}}{N}C_{^6Li} + \frac{N_{^7Li}}{N}C_{^7Li}$ where the heat capacities are calculated with the formula from Excercise 2.4.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment