Skip to content
Snippets Groups Projects
Verified Commit 17b727f4 authored by Anton Akhmerov's avatar Anton Akhmerov
Browse files

fix spherical integration

parent 10da5097
No related branches found
No related tags found
1 merge request!14Introduce k-space in lecture 2
Pipeline #14859 passed
......@@ -155,7 +155,7 @@ To compute this integral, we observe that the integrand depends only on $|\mathb
$$
\begin{align}
E &= \frac{L^3}{(2\pi)^3}\int\limits_0^{2π}d\varphi\int\limits_0^πdθ\int\limits_0^∞ k^2 dk × 3 × \left(\frac{1}{2}\hbar\omega(k)+\frac{\hbar\omega(k)}{ {\rm e}^{\hbar\omega(k)/{k_B T}}-1}\right)\\
E &= \frac{L^3}{(2\pi)^3}\int\limits_0^{2π}d\varphi\int\limits_0^π \sin θ\;\int\limits_0^∞ k^2 dk × 3 × \left(\frac{1}{2}\hbar\omega(k)+\frac{\hbar\omega(k)}{ {\rm e}^{\hbar\omega(k)/{k_B T}}-1}\right)\\
&= \frac{L^3}{(2\pi)^3}\int_0^∞ 12 π k^2 dk \left(\frac{1}{2}\hbar\omega(\mathbf{k})+\frac{\hbar\omega(\mathbf{k})}{ {\rm e}^{\hbar\omega(\mathbf{k})/{k_{\rm B}T}}-1}\right)\\
&= \frac{L^3}{(2\pi)^3}\int_0^∞ 12 π v^{-3} \omega^2 d\omega \left(\frac{1}{2}\hbar\omega+\frac{\hbar\omega}{ {\rm e}^{\hbar\omega/{k_{\rm B}T}}-1}\right).
\end{align}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment