Skip to content
Snippets Groups Projects
Commit 2925f7b3 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 11_nearly_free_electron_model_solutions.md - typos

parent ffb00904
No related branches found
No related tags found
No related merge requests found
Pipeline #59715 passed
......@@ -134,24 +134,24 @@ E_-(k) = -\frac{\lambda}{a}+\frac{\hbar^2}{4m}\left[k^2+\left(k-\frac{2\pi}{a}\r
See the lecture notes!
### Subquestion 3
We split the Hamiltonian into two parts $H=H_n+H_{\hat{n}}$, where $H_n$ describes a particle in a single delta-function potential well, and $H_\hat{n}$ is the perturbation by the other delta functions:
We split the Hamiltonian into two parts $H=H_n+H_{\overline{n}}$, where $H_n$ describes a particle in a single delta-function potential well, and $H_\hat{n}$ is the perturbation by the other delta functions:
\begin{align}
H_n = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - V_0\delta(x-na) \\
H_\hat{n} = & - V_0 \sum_{m\neq n}\delta(x-ma)
H_n = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - \lambda\delta(x-na) \\
H_\overline{n} = & - \lambda \sum_{m\neq n}\delta(x-ma)
\end{align}
such that $H_n|n\rangle = \epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=mV_0/\hbar^2$. We can now calculate
such that $H_n|n\rangle = \epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=m\lambda/\hbar^2$. We can now calculate
$$
\langle n | H |n \rangle = \epsilon_0 + \langle n |H_\hat{n}|n\rangle
\langle n | H |n \rangle = \epsilon_0 + \langle n |H_\overline{n}|n\rangle
$$
Note that the last term represents the change in energy of the wavefunction $|n\rangle$ that is centered at the $n$-th delta function caused by the presence of the other delta functions. This term yields
$$
\langle n |H_\hat{n}|n\rangle = \kappa \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = \kappa \sum_{m \neq 0 } e^{-2\kappa|ma|} = 2\kappa(\frac{1}{1-e^{-2\kappa a}}-1)
\langle n |H_\overline{n}|n\rangle = -\kappa \lambda \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = -\kappa \lambda \sum_{m \neq 0 } e^{-2\kappa|ma|} = -2\kappa\lambda(\frac{1}{1-e^{-2\kappa a}}-1)
$$
Note that the result should not depend on $n$, so we chose $n=0$ for convenience.
Similarly, we can calculate
$$
\langle n-1 | H |n \rangle = \epsilon_0\langle n-1 |n \rangle + \langle n-1 |H_\hat{n}|n\rangle
\langle n-1 | H |n \rangle = \epsilon_0\langle n-1 |n \rangle + \langle n-1 |H_\overline{n}|n\rangle
$$
where $\langle n-1|n\rangle$ is the overlap between two neighbouring wavefunctions:
$$
......@@ -159,8 +159,8 @@ $$
$$
and
\begin{align}
\langle n-1|H_\hat{n}|n\rangle = & \kappa \sum_{m \neq 0 }\int e^{-\kappa|x-a|} \delta(x-ma) e^{-\kappa|x|} \\
=& \kappa \sum_{m \neq 0 } e^{-\kappa a|m-1|} e^{-\kappa a |m|} =\kappa(e^{ka}+e^{-ka}) \sum_{m=1}^{m=\infty} e^{-2\kappa a m}
\langle n-1|H_\overline{n}|n\rangle = & -\kappa \lambda \sum_{m \neq 0 }\int e^{-\kappa|x-a|} \delta(x-ma) e^{-\kappa|x|} \\
=& -\kappa \lambda \sum_{m \neq 0 } e^{-\kappa a|m-1|} e^{-\kappa a |m|} =-\kappa \lambda(e^{ka}+e^{-ka}) \sum_{m=1}^{m=\infty} e^{-2\kappa a m}
\end{align}
### Subquestion 4
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment