Skip to content
Snippets Groups Projects
Commit 31a63d05 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 3_drude_model.md - typo fixes

parent f6d320e6
Branches
No related tags found
No related merge requests found
Pipeline #52011 passed
......@@ -153,20 +153,20 @@ m\mathbf{v}(t + dt) = 0
$$
The rest of the electrons $(1 - dt/τ)$ are accelerated by the Lorentz force $F$, so their velocity becomes
$$
m\mathbf{v}(t + dt) = m\mathbf{v}(t) + F⋅dt.
m\mathbf{v}(t + dt) = m\mathbf{v}(t) + \mathbf{F}⋅dt.
$$
To find the average velocity, we take a weighted average of these two groups of particles:
$$
\begin{aligned}
m\mathbf{v}(t+dt) &= [m\mathbf{v}(t) + F dt]\left(1 - \frac{dt}{\tau}\right) + 0⋅\frac{dt}{\tau} \\
&= [m\mathbf{v}(t) + F dt] \left(1 - \frac{dt}{\tau}\right) \\
&= m\mathbf{v}(t) + dt [F - m\frac{\mathbf{v(t)}}{\tau}] - \frac{F}{\tau} dt^2
&= [m\mathbf{v}(t) + \mathbf{F} dt] \left(1 - \frac{dt}{\tau}\right) \\
&= m\mathbf{v}(t) + dt [\mathbf{F} - m\frac{\mathbf{v(t)}}{\tau}] - \frac{\mathbf{F}}{\tau} dt^2
\end{aligned}
$$
We now neglect the term proportional to $dt²$ (it vanishes when $dt → 0$).
Finally, we recognize that $\left[\mathbf{v}(t+dt) - \mathbf{v}(t)\right]/dt = d\mathbf{v}(t)/dt$, which results in
$$
m\frac{d\mathbf{v}}{dt} = -m\frac{\mathbf{v}}{τ} + F.
m\frac{d\mathbf{v}}{dt} = -m\frac{\mathbf{v}}{τ} + \mathbf{F}.
$$
Observe that the first term on the right-hand side has the same form as a drag force: it always decelerates the electrons.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment