Skip to content
Snippets Groups Projects
Commit 323cda55 authored by Radoica Draškić's avatar Radoica Draškić
Browse files

Fix the typo.

parent a9e01e73
Branches
No related tags found
1 merge request!62Resolve "Typo in excercises Einstein model"
Pipeline #28062 passed
......@@ -381,7 +381,7 @@ $$
Z = \sum_j e^{-\beta E_j}.
$$
3. Using the partition function, compute the expectation value of the energy.
4. Compute the heat capacity. Check that in the high temperature limit you get the same result as in Exercise 1.1.
4. Compute the heat capacity. Check that in the high temperature limit you get the same result as in Exercise 1.3.
- What temperature can be considered high?
- What is the expectation value of $n$?
......
......@@ -52,7 +52,7 @@ $$
C = \frac{\partial \langle E\rangle}{\partial T} = \frac{\partial\langle E\rangle}{\partial\beta}\frac{\partial\beta}{\partial T} = k_B(\beta\hbar\omega)^2\frac{e^{\beta\hbar\omega}}{(e^{\beta\hbar\omega} - 1)^2}.
$$
In the high temperature limit $\beta \rightarrow 0$ and $e^{\beta\hbar\omega} \approx 1 + \beta\hbar\omega$, so $C \rightarrow k_B$ which is the same result as in Exercise 1.1.
In the high temperature limit $\beta \rightarrow 0$ and $e^{\beta\hbar\omega} \approx 1 + \beta\hbar\omega$, so $C \rightarrow k_B$ which is the same result as in Exercise 1.3.
5.
......
......@@ -73,4 +73,4 @@ $$
E = \frac{3\hbar L^3}{2\pi^2}\frac{1}{v_xv_yv_z}\int_0^{\kappa_D} d\kappa\frac{\kappa^3}{e^{\beta\hbar\kappa} - 1} + T \text{ independent part} = \frac{3L^3}{2\pi^2\hbar^3\beta^4}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1} + T \text{ independent part},
$$
hence $C = \frac{\partial E}{\partial T} = \frac{6k_B^4L^3T^3}{\pi^2\hbar^3}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1}$. We see that the result is similar to the one with the linear dispersion, the only difference is the factor $1/v_xv_yv_y$ instead of $1/v^3$.
hence $C = \frac{\partial E}{\partial T} = \frac{6k_B^4L^3T^3}{\pi^2\hbar^3}\frac{1}{v_xv_yv_z}\int_0^{\beta\hbar\kappa_D} dx\frac{x^3}{e^{x} - 1}$. We see that the result is similar to the one with the linear dispersion, the only difference is the factor $1/v_xv_yv_z$ instead of $1/v^3$.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment