Skip to content
Snippets Groups Projects
Commit 374eaa44 authored by Kostas Vilkelis's avatar Kostas Vilkelis :flamingo:
Browse files

add 9,10 solutions

parent 6dab3d36
No related branches found
No related tags found
1 merge request!65Crystal structure changes
Pipeline #30148 passed
......@@ -37,6 +37,9 @@ nav:
- Solutions:
- Einstein model: '1_einstein_model_solutions.md'
- Debye model: '2_debye_model_solutions.md'
- Crystal structure: '9_crystal_structure_solutions.md'
- X-ray diffraction: '10_xray_solutions.md'
theme:
name: material
......
```python tags=["initialize"]
from matplotlib import pyplot as plt
import numpy as np
from math import pi
```
# Solutions for lecture 10 exercises
## Exercise 1: Equivalence of direct and reciprocal lattice
### Subquestion 1
$$
V^*=\left|\mathbf{b}_{1} \cdot\left(\mathbf{b}_{2} \times \mathbf{b}_{3}\right)\right| = \frac{2\pi}{V}\left| (\mathbf{a}_{2} \times \mathbf{a}_{3}) \cdot\left(\mathbf{b}_{2} \times \mathbf{b}_{3}\right)\right| = \frac{(2\pi)^3}{V}
$$
In the second equality, we used the reciprocal lattice vector definition (see notes). In the third equality, we used the identity:
$$
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})
$$
### Subquestion 2
$$
\mathbf{a}_{i} \epsilon_{ijk} = \frac{2\pi}{V^*} (\mathbf{b}_{j} \times \mathbf{b}_{k})
$$
whereas $\epsilon_{ijk}$ is the [Levi-Civita tensor](https://en.wikipedia.org/wiki/Levi-Civita_symbol#Three_dimensions)
### Subquestion 3
BCC primitive lattice vectors are given by:
$$
\mathbf{a_1} = \frac{a}{2} \left(-\hat{\mathbf{x}}+\hat{\mathbf{y}}+\hat{\mathbf{z}} \right) \\
\mathbf{a_2} = \frac{a}{2} \left(\hat{\mathbf{x}}-\hat{\mathbf{y}}+\hat{\mathbf{z}} \right) \\
\mathbf{a_3} = \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{y}}-\hat{\mathbf{z}} \right)
$$
using definition of reciprocal lattice vector (see notes), one can show:
$$
\mathbf{b_1} = \frac{2 \pi}{a} \left(\hat{\mathbf{y}}+\hat{\mathbf{z}} \right) \\
\mathbf{b_2} = \frac{2 \pi}{a} \left(\hat{\mathbf{x}}+\hat{\mathbf{z}} \right) \\
\mathbf{b_3} = \frac{2 \pi}{a} \left(\hat{\mathbf{x}}+\hat{\mathbf{y}} \right)
$$
which is FCC primitive lattice vectors. Using the result in Subquestion 2, the vice versa result is trivial
### Subquestion 4
Brillouin zone is most easily given by the Wigner Seitz unit cell (see notes) by constructing planes in the midpoint between a lattice point and a nearest neighbor. Our lattice is FCC, so the reciprocal lattice is BCC. Since BCC has 8 nearest neighbors (see interactive figure in last week's [Exercise 1: Diatomic crystal](https://solidstate.quantumtinkerer.tudelft.nl/9_crystal_structure/#exercise-1-diatomic-crystal)), there will be 8 planes. A polyhedron which has 8 faces is an octahedron.
## Exercise 2: Miller planes and reciprocal lattice vectors
### Subquestion 1
??? hint "First small hint"
The $(hkl)$ plane intersects lattice at position vectors of \frac{\mathbf{a_1}}{h}, \frac{\mathbf{a_2}}{k}, \frac{\mathbf{a_1}}{l}. Can you define a general vector inside the $(hkl)$ plane?
??? hint "Second small hint"
Whats the best vector operation to show orthogonality between two vectors?
### Subquestion 2
One can compute the normal to the plane by using result from Subquestion 1:
$\hat{\mathbf{n}} = \frac{\mathbf{G}}{|G|}$
For lattice planes, there is always a plane intersecting the zero lattice point (0,0,0). As such, the distance from this plane to the closest next one is given by:
$ d = \hat{\mathbf{n}} \cdot \frac{\mathbf{a_1}}{h} = \frac{2 \pi}{|G|} $
### Subquestion 3
Since $\rho=d / V$, we must maximize $d$. To do that, we must minimize $|G|$ (Subquestion 2). We must therefore use the smallest possible reciprocal lattice vector which means {100} family of planes (in terms of FCC primitive lattice vectors).
## Exercise 3: X-ray scattering in 2D
### Subquestion 1
```
def reciprocal_lattice(N = 7, lim = 40):
y = np.repeat(np.linspace(-18.4*(N//2),18.4*(N//2),N),N)
x = np.tile(np.linspace(-13.4*(N//2),13.4*(N//2),N),N)
plt.figure(figsize=(5,5))
plt.plot(x,y,'o', markersize=10, markerfacecolor='none', color='k')
plt.xlim([-lim,lim])
plt.ylim([-lim,lim])
plt.xlabel('$\mathbf{b_1}$')
plt.ylabel('$\mathbf{b_2}$')
plt.xticks(np.linspace(-lim,lim,5))
plt.yticks(np.linspace(-lim,lim,5))
reciprocal_lattice()
plt.show()
```
### Subquestion 2
$k = \frac{2 \pi}{\lambda} = 37.9 nm^{-1}$
### Subquestion 3
Note that $|k| = |k'| = k $ since elastic scatering
```
reciprocal_lattice()
# G vector
plt.arrow(0,0,13.4*2,18.4,color='r',zorder=10,head_width=2,length_includes_head=True)
plt.annotate('$\Delta \mathbf{G}$',(17,6.5),fontsize=14,ha='center',color='r')
# k vector
plt.arrow(-6,37.4,6,-37.4,color='b',zorder=11,head_width=2,length_includes_head=True)
plt.annotate('$\mathbf{k}$',(-8,18),fontsize=14, ha='center',color='b')
# k' vector
plt.arrow(-6,37.4,6+13.4*2,-37.4+18.4,color='k',zorder=11,head_width=2,length_includes_head=True)
plt.annotate('$\mathbf{k\'}$',(15,30),fontsize=14, ha='center',color='k')
```
## Exercise 4: Structure factors
### Subquestion 1
$$
S_\mathbf{G} = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi (h+k+l)}) = \begin{cases}
2f & \text{if $h+k+l$ is even}\\
0 & \text{if $h+k+l$ is odd}
\end{cases}
$$
where we used sum over the basis of BCC in $j$.
### Subquestion 2
See when $S_G$ is zero
### Subquestion 3
$$
S_\mathbf{G} = \begin{cases}
f_1 + f_2 & \text{if $h+k+l$ is even}\\
f_1 - f_2 & \text{if $h+k+l$ is odd}
\end{cases}
$$
### Subquestion 4
For FCC, the structure factor is the following:
$$
S_\mathbf{G} = \begin{cases}
4f & \text{if $h,k,l$ are all odd or even}\\
0 & \text{if otherwise}
\end{cases}
$$
Since $(110)$ have mixed odd and even indices, no diffraction peak will be observed on FCC. For BCC, however, $(110)$ gives $1+1+0 = 2$ even number, so there will be diffraction.
```python tags=["initialize"]
from matplotlib import pyplot as plt
import numpy as np
from math import pi
```
# Solutions for lecture 9 exercises
## Exercise 1: Diatomic crystal¶
### Subquestion 1
```
y = np.repeat(np.arange(0,8,2),4)
x = np.tile(np.arange(0,8,2),4)
plt.figure(figsize=(5,5))
plt.axis('off')
# WZ
plt.plot([5,5,7,7,5],[5,7,7,5,5], color='k',ls=':')
plt.annotate('WZ',(6,6.5),fontsize=14,ha='center')
# PUC1
plt.plot([0,2,4,2,0],[4,6,6,4,4], color='k',ls=':')
# UPC2
plt.plot([6,4,2,4,6],[0,0,2,2,0], color='k',ls=':')
plt.plot(x,y,'ko', markersize=15)
plt.plot(x+1,y+1, 'o', markerfacecolor='none', markeredgecolor='k', markersize=15);
```
### Subquestion 2
In case of different particles, $V = a^2$.
If identical particles, nearest neighbour distance becomes $a^* = \frac{a}{\sqrt{2}}$ and so $V^* = {a^*}^2 = \frac{a^2}{2}$
### Subquestion 3
$\mathbf{a_1} = a \hat{\mathbf{x}}, \quad \mathbf{a_2} = a \hat{\mathbf{y}}$
Basis:
$\Huge \bullet \normalsize = (0,0)$
$\bigcirc = (\frac{1}{2},\frac{1}{2})$
### Subquestion 4
Cubic lattice
Basis:
$\Huge \bullet \normalsize = (0,0,0)$
$\bigcirc = (\frac{1}{2},\frac{1}{2},\frac{1}{2})$
Example: Cesium Chloride (CsCl)
### Subquestion 5
BCC lattice
Example: Sodium (Na)
### Subquestion 6
See notes
??? hint "What to do?"
Relate radius of the atom $R$ to the lattice parameter $a$ by considering corner atom touching the center one
## Exercise 2: Diamond lattice
### Subquestion 1
It is made up from two FCC lattices
$$
\mathbf{a_1} = \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{y}} \right) \\
\mathbf{a_2} = \frac{a}{2} \left(\hat{\mathbf{x}}+\hat{\mathbf{z}} \right) \\
\mathbf{a_3} = \frac{a}{2} \left(\hat{\mathbf{y}}+\hat{\mathbf{z}} \right)
$$
Basis = $ (0,0,0), (\frac{1}{4},\frac{1}{4},\frac{1}{4})$
### Subquestion 2
2 atoms in a primitive unit cell
??? hint "Why 2 atoms?"
The basis for the lattice (defined in terms of the primitive lattice vectors) has two atoms. Keep in mind that atoms and lattice points are NOT equivalent in most cases!
$V = \left| \mathbf{a_1} \cdot \left(\mathbf{a_2} \times \mathbf{a_3} \right) \right| = \frac{a^3}{4}$
### Subquestion 3
1 FCC lattice has 4 atoms. Therefore, 2 combined fcc lattices will have 8 atoms
$V = a^3$
### Subquestion 4
??? hint "Visual hint"
Consider the atom at (0.25,0.25,0.25) coordinates in the interactive diamond lattice image.
4 nearest neighbours: $(\frac{1}{4},\frac{1}{4},\frac{1}{4})$ and $(\frac{1}{4},\frac{1}{4},\frac{1}{4}) + \mathbf{a_i} $ where $i = 1,2,3$
### Subquestion 5
34%
??? hint "Hint"
The nearest neighbour atoms should be touching for most efficient packing
## Exercise 3: Directions and Spacings of Miller planes
### Subquestion 1
Miller plane - plane that intersects and infinite number of lattice points
Miller index - Set of 3 integers which specify a set of parallel planes
### Subquestion 2
??? hint "Small hint"
The $(hkl)$ plane intersects lattice at position vectors of \frac{\mathbf{a_1}}{h}, \frac{\mathbf{a_2}}{k}, \frac{\mathbf{a_1}}{l}. Can you define a general vector inside the $(hkl)$ plane?
??? hint "Anoter small hint"
What vector operation takes two vectors and produces another vector that is perpendicular to the previous two?
??? hint "Last small hint"
Don't forget to normalize your direction vectors!
### Subquestion 3
Same hints as in Subquestion 2
### Subquestion 4
??? hint "Big hint"
There is always a neighbouring lattice plane which intersects the (0,0,0) lattice point.
??? hint "Small hint"
Don't forget to reuse your unit normal of a plane from Subquestion 2.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment