Skip to content
Snippets Groups Projects
Commit 41313665 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

second attempt to fix the latex display

parent d550ea26
No related branches found
No related tags found
1 merge request!104lecture 10 solutions
Pipeline #57542 passed
......@@ -148,24 +148,27 @@ $S(\mathbf{G}) = \sum_j f_j e^{i \mathbf{G} \cdot \mathbf{r_j}} = f(1 + e^{i \pi
Solving for $h$, $k$, and $l$ results in
$
S(\mathbf{G}) = \begin{cases}
2f, \: \mathrm{if\: h+k+l\: is \:even}\\
0, \: \mathrm{if\: h+k+l\: is \:odd}.
$$
S(\mathbf{G}) =
\begin{cases}
2f, \: \mathrm{if\: h+k+l\: is \:even}\\
0, \: \mathrm{if\: h+k+l\: is \:odd}.
\end{cases}
$
$$
Thus if $h+k+l$ is odd, diffraction peaks dissapear
3.
Let $f_1 \neq f_2$, then
$
S(\mathbf{G}) = \begin{cases}
f_1+f_2, \: \mathrm{if\: h+k+l\: is \:even}\\
f_1-f_2, \: \mathrm{if\: h+k+l\: is \:odd}.
$$
S(\mathbf{G}) =
\begin{cases}
f_1+f_2, \: \mathrm{if\: h+k+l\: is \:even}\\
f_1-f_2, \: \mathrm{if\: h+k+l\: is \:odd}.
\end{cases}
$
$$
4.
Due to bcc systematic absences, the peaks from lowest to largest angle are:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment