Skip to content
Snippets Groups Projects
Commit 44f306e5 authored by T. van der Sar's avatar T. van der Sar
Browse files

Update 11_nearly_free_electron_model_solutions.md - fix solution (work in progress)

parent b33ac756
No related branches found
No related tags found
No related merge requests found
Pipeline #59500 passed
......@@ -134,6 +134,23 @@ E_-(k) = -\frac{\lambda}{a}+\frac{\hbar^2}{4m}\left[k^2+\left(k-\frac{2\pi}{a}\r
See the lecture notes!
### Subquestion 3
We split the Hamiltonian into two parts $H=H_0+H_1$, where$H_0$ describes a particle in one delta-function potential well, and $H_1$ is the perturbation by the other delta functions:
\begin{align}
H_0 = & \frac{-\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - \V_0\delta(x-na) \\
H_1 = & - V_0 \sum_{m\neq n}\delta(x-ma)
\end{align}
such that $H_0|n\rangle = -\epsilon_0|n\rangle = -\hbar^2\kappa^2/2m |n\rangle$ with $\kappa=mV_0/\hbar^2$.
It follows that
$$
\langle n | H |n \rangle = \epsilon_0 + \langle n |H_1|n\rangle
$$
where
$$
\langle n |H_1|n\rangle = \kappa \sum_{m \neq 0 }\int e^{-2\kappa|x|}\delta(x-ma) = \kappa \sum_{m \neq 0 } e^{-2\kappa|ma|}
$$
In progress of being updated....
\begin{equation}
\varepsilon_0=\braket{n|\hat{H}|n}=\braket{n|\hat{K}|n}+\braket{n|\hat{V}(x)|n}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment