Skip to content
Snippets Groups Projects
Commit 472a8c78 authored by Bowy La Riviere's avatar Bowy La Riviere
Browse files

Updated solutions and added solutions to the warm-up exercises

parent 941a9b05
No related branches found
No related tags found
1 merge request!95lecture_2_solutions
Pipeline #49549 failed
---
jupyter:
jupytext:
text_representation:
extension: .md
format_name: markdown
format_version: '1.0'
jupytext_version: 0.8.6
kernelspec:
display_name: Python 3
language: python
name: python3
---
```python tags=["initialize"]
from matplotlib import pyplot
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
from scipy.optimize import curve_fit
from scipy.integrate import quad
from common import draw_classic_axes, configure_plotting
configure_plotting()
```
# Solutions for lecture 2 exercises
### warm-up exercises
1. For low T, $\beta \rightarrow \infty$. The heat capacity is then given as:
$$
C \overset{\mathrm{low \: T}}{\approx} 9Nk_{\mathrm{B}}\left(\frac{T}{T_{D}}\right)^3\int_0^{T_{D}/T}\frac{x^4{\mathrm{e}}^x}{({\mathrm{e}}^x-1)^2}{\mathrm{d}}x.
$$
2.
```python
fig, ax = plt.subplots()
T = np.linspace(0.1, 3)
T_D = [1,2]
ax.plot(omega, (T/T_D[0])**3, 'b-', label = r'$T_{D,1}$')
ax.plot(omega, (T/T_D[1])**3, 'r-', label = r'$T_{D,2}$')
ax.set_ylim([0,3])
ax.set_xlim([0,3])
ax.set_xlabel('$T$')
ax.set_xticks([0])
ax.set_xticklabels(['$0$'])
ax.set_ylabel('$C$')
ax.set_yticks([0])
ax.set_yticklabels(['$0$'])
ax.set_title('$T_{D,1}<T_{D,2}$')
ax.legend();
```
3. The polarization is related to the direction of the amplitudes of the waves with respect to the direction of the wave.
In 3D, there are only 3 different amplitude directions possible.
4. $$
\int k_x k_y \rightarrow \int_limits_{0}^{2\pi} \mathrm{d} \theta \int_limits_{0}^{\infty} k \mathrm{d} k = 2\pi \int_limits_{0}^{\infty} k \mathrm{d} k
$$
5. The Debye frequency $\omega_D$.
6. The wavelength is of the order of the interatomic spacing:
$$
\lambda = \sqrt{\frac{4}{3}\pi} a.
$$
### Exercise 1: Debye model: concepts.
1, 2, 3.
See the lecture notes.
4.
1. $k = \frac{L}{4\pi}$ and $k = -\frac{L}{4\pi}$.
2.
3. The number of states per $k$ or per frequency.
4.
$$
g(\omega) = \frac{dN}{d\omega} = \frac{dN}{dk}\frac{dk}{d\omega} = \frac{1}{v}\frac{dN}{dk}.
$$
We assume that in $d$ dimensions there are $d$ polarizations.
For 1D we have that $N = \frac{L}{2\pi}\int_{-k}^{k} dk$, hence $g(\omega) = \frac{L}{\pi v}$.
......@@ -22,29 +79,21 @@ For 3D we have that $N = 3\left(\frac{L}{2\pi}\right)^3\int d^3k = 3\left(\frac{
### Exercise 2: Debye model in 2D.
1.
See the lecture notes.
2.
1. See lecture notes.
2.
$$
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant}.
\begin{align}
E &= \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega \\
&= \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\beta\hbar\omega_D}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant}.
\end{align}
$$
3.
High temperature implies $\beta \rightarrow 0$, hence $E = \frac{L^2}{\pi v^2\hbar^2\beta^3}\frac{(\beta\hbar\omega_D)^2}{2} + T \text{ independent constant}$, and then $C = \frac{k_BL^2\omega^2_D}{2\pi v^2} = 2Nk_B$. We've used the value for $\omega_D$ calculated from $2N = \int_{0}^{\omega_D}g(\omega)d\omega$.
4.
In the low temperature limit we have that $\beta \rightarrow \infty$, hence $E \approx \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant} = \frac{2\zeta(3)L^2}{\pi v^2\hbar^2\beta^3} + T \text{ independent constant}$. Finally $C = \frac{6\zeta(3)k^3_BL^2}{\pi v^2\hbar^2}T^2$. We used the fact that $\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx = 2\zeta(3)$ where $\zeta$ is the Riemann zeta function.
3. High temperature implies $\beta \rightarrow 0$, hence $E = \frac{L^2}{\pi v^2\hbar^2\beta^3}\frac{(\beta\hbar\omega_D)^2}{2} + T \text{ independent constant}$, and then $C = \frac{k_BL^2\omega^2_D}{2\pi v^2} = 2Nk_B$. We've used the value for $\omega_D$ calculated from $2N = \int_{0}^{\omega_D}g(\omega)d\omega$.
4. In the low temperature limit we have that $\beta \rightarrow \infty$, hence $E \approx \frac{L^2}{\pi v^2\hbar^2\beta^3}\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx + T \text{ independent constant} = \frac{2\zeta(3)L^2}{\pi v^2\hbar^2\beta^3} + T \text{ independent constant}$. Finally $C = \frac{6\zeta(3)k^3_BL^2}{\pi v^2\hbar^2}T^2$. We used the fact that $\int_{0}^{\infty}\frac{x^2}{e^{x} - 1}dx = 2\zeta(3)$ where $\zeta$ is the Riemann zeta function.
### Exercise 3: Different phonon modes.
1.
1.
$$
g(\omega) = \sum_{\text{polarizations}}\frac{dN}{dk}\frac{dk}{d\omega} = \left(\frac{L}{2\pi}\right)^3\sum_{\text{polarizations}}4\pi k^2\frac{dk}{d\omega} = \frac{L^3}{2\pi^2}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\omega^2
$$
......@@ -53,13 +102,9 @@ $$
E = \int_{0}^{\omega_D}g(\omega)\hbar\omega\left(\frac{1}{e^{\beta\hbar\omega} - 1} + \frac{1}{2}\right)d\omega = \frac{L^3}{2\pi^2\hbar^3\beta^4}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)\int_{0}^{\beta\hbar\omega_D}\frac{x^3}{e^{x} - 1}dx + T \text{ independent constant}.
$$
2.
Note that we can get $\omega_D$ from $3N = \int_{0}^{\omega_D}g(\omega)$ so everything cancels as usual and we are left with the Dulong-Petit law $C = 3Nk_B$.
3.
2. Note that we can get $\omega_D$ from $3N = \int_{0}^{\omega_D}g(\omega)$ so everything cancels as usual and we are left with the Dulong-Petit law $C = 3Nk_B$.
In the low temperature limit we have that $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
3. In the low temperature limit we have that $C \sim \frac{2\pi^2k_B^4L^3}{15\hbar^3}\left(\frac{2}{v_\perp^3} + \frac{1}{v_\parallel^3}\right)T^3$. We used that $\int_{0}^{\infty}\frac{x^3}{e^{x} - 1}dx = \frac{\pi^4}{15}$.
### Exercise 4: Anisotropic sound velocities.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment